
Preamble 
Inspecting coloured industrial products is an important 
application area for vision systems. In addition, natural 
products and raw materials are often inspected, graded or 
sorted by machine on the basis of colour. For Machine 
Vision, the prime requirement is almost always verification, 
rather than unassisted recognition. The range of variation of 
each colour associated with an industrial artifact can 
sometimes be specified quite precisely. This not always 
possible; in many situations, colours have to be learned 
from carefully selected production samples. The range of 
variation of the colours of natural products almost always 
has to be learned. Even ‘‘standard’’ colours, such as red, 
yellow, green, etc, also have to be learned. The reason is 
that every person identifies colours in a different way. Once 
it has been trained, a colour-recognition program generates 
images in which each "intensity" value is effectively the 
name of a colour. Such an image can then be measured 
using the techniques described earlier. On the way through 
this chapter, we will also see how colour images can be 
enhanced and their edges detected.




Colour Vision

Over the centuries, colour vision has been studied 
extensively by philosophers, psychologists, physiologists, 
biologists, physicists and chemists. Photographers, printers 
and video engineers also have a special interest in colour, 
with a emphasis on trying to reproduce the colours 
encountered in nature. Research has resulted in a large but 
still incomplete body of knowledge, termed Colour Science. 
Understandably, this is concerned primarily with 
understanding and emulating colour vision in humans and 
animals. That is not our interest here! 


The preoccupation of industrial Machine Vision systems 
designers is verifying that coloured features on artifacts are 
of the correct hue, size, position and shape. We need to be 
able to segment an image according to the colours that it 
contains. For example, we might want to distinguish ‘‘red’’ 
and ‘‘blue’’ printing; identify ‘‘yellow’’ tablets against a 
‘‘green’’ surface (to count them); or measure the area 
covered by red raspberry jam on a cake. Performing tasks 
such as these does not require that a machine can replicate 
the subtleties of human colour vision. 


Instead, vision engineers are often faced with stark 
questions, such as


"Is the feature at position [X,Y] green?’’

"How big is the "green" blob that covers point [X,Y]?"

But, what is ‘‘green’’? My late wife and I often disagreed (in 
the nicest possible way, of course) about the names of 
colours, particularly in the blue-green part of the spectrum. 
Who is correct? My concept of ‘‘green’’ was quite different 
from hers and, almost certainly, yours as well! I encountered 



this recently, when a friend saw me taking vitamin D 
capsules. On this occasion my wife and I agreed that they 
were “obviously blue” but our friend was equally insistent 
that they were "green". Who was correct? In fact, we all 
were, according to our own internal concepts of "green". 
There is no formal physical, or mathematical, definition of 
colour classes, such as “blue”, “green”, “yellow” etc.. Colour 
classification is learned in early childhood and is revised 
through everyday experiences.


In this chapter, we are seemingly going to ignore much of 
Colour Science. We will concentrate on how Colour 
Recognition can be learned by a machine, or program, 
under the guidance of a human being. In fact, we are not 
discarding all of the scientific work that has been devoted to 
understanding colour but to build on it. The fruits of that 
research are embodied in the design of the camera. As an 
engineer, I use what resources are available, in this case 
low-cost high-quality RGB cameras. They are sufficient to 
be part of a chain that can reproduce a wide range of 
natural colours. That is proof enough that the RGB signals 
convey enough information to be useful within a colour-
recognition system.


Typical applications that we will address include:

• Inspecting printing on documents, bank notes, 
packages, credit cards, etc.

• Examining patterned fabric, carpets,

• Guiding a robot to pick ripe fruit from a tree

• Trimming and grading fruit and vegetables

• Controlling food production (e.g. counting olives and 
tomato slices on a pizza)

• Monitoring the distribution of cherries in cake slices




• Reading resistor colour codes

• Identifying coloured wires

•Controlling manufacturing systems (assembly, 
machining, painting, etc)


Other applications of the coarse colour recognition that can 
be performed by machine will be mentioned later.


Image Segmentation by Colour 
In previous chapters, we have relied heavily on thresholding 
intensity as a means of segmenting images. Of course, this 
relies on there being distinct regions of nearly constant 
intensity. Within such regions intensity variations are small, 
compared to the much larger differences that exist between 
them. In some applications that we will encounter, there is a 
distinct difference in colour but not intensity. (Figure 6.1) Is 
there a way in we can "threshold" colour? Indeed, there is 
and, in this chapter, we shall show how this can be 
achieved. Once coloured image features have been 
isolated, they can be measured as we have already 
explained, for characterising binary objects.

 

Colour Recognition

Our objective is to build a machine, or write a computer 
program, that is able to learn from samples of coloured 
objects shown to it. After an initial training phase, the 
machine should be able to recognise those same colours, 
whenever they are encountered again. The colour samples 
for learning are selected by a person, or a committee of 
experts, called the teacher. He/she/they is solely 
responsible for defining and naming colours for the machine 
to learn. Suppose, for example that we want to design a 



machine that is able to inspect dress fabric having just three 
distinct colours. The teacher may decide to call these “red”, 
“green” and “blue”. On the other hand, a German speaker 
would probably use other names: “rot”, “grün” and “blau” 
instead. (Remember that we saw earlier that colour terms 
do not always translate accurately from one language to 
another.) Such differences of nomenclature do not matter at 
all, because these are merely labels that the teacher uses 
for his/her convenience. What does matter is the ability of 
the machine to learn and later to identify colours in the same 
way as the teacher. We could just as readily use numbers 
as colour names. In fact, this is what an automated Colour 
Recognition Filter (CRF) will do. How those numbers are 
reconciled with familiar colour names in English, German, or 
any other natural language is totally irrelevant for the design 
of the CRF. This seemingly trivial point is important because 
it makes it clear that only the teacher can legitimately judge 
the effectiveness of the learning exercise. It is unreasonable 
for anybody, apart from the teacher, to criticise a well-
designed CRF; if anyone wishes to disagree with its 
performance, then they should argue with the teacher 
instead! 


Sample Applications 
In a typical application of the type that we will discuss, there 
may be just a few distinct colour categories to consider. 
Furthermore, the variation within each class is relatively 
small. Just what this means in practice will become evident 
as we progress through this chapter. A picture playing-card 
serves as a convenient model for a large group of 
applications, such as plastic/cardboard containers printed 
using a small number of inks. The card illustrated in Figure 



6.1[TL] was printed on white card, using five inks: red, blue, 
yellow, “skin” and "black". ["Skin" is merely a convenient 
abbreviation for the flesh-coloured tone on the playing card] 
Notice that our machine must be able to identify two 
additional classes of colour: “white” and “everything else”. 
Identifying each of these involves only a crude form of 
colour recognition, that is able to distinguish clearly 
separable colours. By comparison, human colour vision is 
sophisticated, subtle and not very well understood.

Assumptions

In what follows, many of the complications and subtleties of 
human colour vision are avoided by making certain 
assumptions. We will therefore take it that there are no 
effects on the recognition of the colour of a single pixel as a 
result of


Localised colour contrast

Motion

Fluctuating brightness or colour

Colour adaptation

Variable ambient lighting

Observer fatigue

Insufficient light for photopic (day-light) vision

Variations in colour perception due to illness, ageing, 
alcohol or other drugs

Language differences


Colour Recognition Filter (CRF)

By analogy with optics, we will use the term Colour 
Recognition Filter (CRF) to refer to a device/program/



function that accepts a colour image as input and generates 
an image as its output. The intensity of each pixel in the 
image generated by a CRF indicates the colour of the 
corresponding pixel in the input image. The association of 
output intensity values and classes of colour has absolutely 
no fundamental significance. For example, output level 67 
might represent a group of colours that is very different from 
those associated with 66 or 68, while the colours 
represented by level 157 might might look similar. In what 
follows in this chapter, we will often display colour 
recognition results using pseudo-colouring. Again, do not 
place any significance on the choice of pseudo-colours, 
which is perfectly arbitrary. We will often display the results 
from several CRFs in a single image, which might, for 
example, delineate the limits of "red", "green", "yellow" 
regions in a single (natural) image)


The teacher might want to design a CRF that reflects the 
range of colours appearing in a factory. To do so, he/she/
they might collect samples, or swatches, of factory product, 
packaging samples and assign unusual names to their 
colours, such as  "tuna can red", "margarine tub blue", 3M 
red, IBM blue, BP green, etc. The nomenclature implicit in a 
formal colour-naming scheme, such as the Munsell Colour 
Atlas, might be used instead.


Image Enhancement

Although colour recognition is the main theme of this 
chapter, we begin by discussing simple ideas for modifying 
an image to enhance details of interest. This will reinforce 
our claim that the RGB components of an image contain all 



of the information needed to analyse its colour content. Just 
a moment’s thought will show that this is so: television relies 
on RGB sensors and displays. Any other, perhaps more 
sophisticated representation of colour has to be translated 
into combinations of RGB signals. If this were not the case, 
you and I would not be happy watching colour television.


We will start with the simplest possible ways of analysing 
the RGB component images and will gradually build up to 
more complex ways of combining them. Eventually, we will 
reach a form of colour recognition filter that is potentially 
capable of emulating its teacher perfectly, within the limits 
imposed by using an RGB camera. Designing it is a bit more 
problematical!


Terminology

The monochrome image representing the R-component of a 
colour image will be called the R-image. The G- and B-
images are defined in a similar way. Also, the monochrome 
image forming the H-component (hue) of a colour image will 
be called its H-image. The monochrome intensity image 
studied in earlier chapters will be called the I-image. We will 
explain in detail later how hue and saturation can be 
calculated from R, G and B. For the moment, let it suffice to 
say that this involves evaluating straightforward 
mathematical formulae.


Familiar Ideas

Figures 6.2 - 6.5 show the R-, G-, B-, H- and S-images for 
four sample colour images.  In some limited situations, 



useful colour separation can be achieved by selecting just 
one of the R-, G-, B-, H- or S-images. Note the following 
points:


Figure 6.2 (Picture playing card)

[TR], R-image: “Red”, “yellow” and “skin” features are 
almost indistinguishable from each other and from white.

[CL], G-image:  Not very useful. (There are no “green” 
features in the original.)

[CR], B-image: The “red” and “yellow” features are 
almost indistinguishable from "black".

[BL], H-image: Not very useful as hue fluctuates wildly in 
“white” areas.

[BR], S-image: “Red”, “blue” and “yellow” features are 
almost indistinguishable from each other. The intensity in 
the S-image  fluctuates wildly in “black” areas. ”Skin” is 
clearly identifiable, since it is the only colour which maps 
to mid-grey.


Figure 6.3 (UK bank-note fluorescent security feature)

The pink and white areas are clearly distinguishable 
from each other and from the background.


Figure 6.4 (Citrus fruit)

The B-image and saturation both provide good contrast; 
the mesocarp and placenta can readily be distinguished 
from the endocarp and exocarp.


Figure 6.5 (Bare printed circuit board)

[TR] R-image: The bare copper pads are clearly 
distinguishable from the coated copper and substrate.

[BL] S-image: The bare copper pads are 
indistinguishable from the coated copper.




[BR] G-image subtracted from the R-image: The bare 
copper pads are highlighted.


The last of these gives a hint of what is to come: combining 
the R-, G-, B-images to obtain a better and more flexible 
approach to the discrimination of colours.


Adjusting RGB Separately

Many useful and interesting effects can be achieved by 
adjusting the RGB components  of an image separately. 
Many standard image-editing programs, such as Adobe 
Photoshop™, provide interactive tools for doing this. 


Figure 6.6 provides several examples of what can be 
achieved with quite simple adjustments of the RGB 
channels. In [TR] and [CL], the R-, G-, B-images have each 
been given a slightly different non-linear “tweak” [The R-, 
G-, B-images have been modified individually by adjusting 
the gamma parameter. See Chapter 4] 


To produce [CR], each of the R-, G-, B-images was 
separately subjected to histogram equalisation. This can be 
a very effective tool for enhancing colour-texture images. 


The bizarre appearance of [BL] was achieved by negating 
the R-image. Non-linear [square and square-root] 
transformations were also applied to the G- and B-image 
respectively. 


In [BR], the G-image alone was adjusted by mixing it with an 
Intensity wedge. 




Using these techniques, it is easy to produce pictures in the 
style of Andy Warhol’s famous false-colour portraits of 
Marilyn Monroe. (Figure 6.7)

Brief Digression

Colour-balance adjustment is one of the primary methods of 
enhancing images for forensic photography, advertising, 
fashion and other photography. It is also useful for 
correcting the appearance of an object that has been 
photographed in tinted light. Figure 6.8 shows the effects of 
viewing three different surfaces under three different light 
sources. The term "White LEDs" refers to devices containing 
LEDs that emit short-wavelengths, illuminating a phosphor 
with a flat emission spectrum. “R, G & B LEDs” refers to tri-
colour devices that emit light in three narrow spectral bands; 
the brightness of each one can be adjusted separately. A 
standard digital camera allows the adjustment of colour-
balance to suit a variety of different lighting conditions. The 
camera has a built-in hardware/software facility for making  
separate adjustments to the RGB signals automatically. 


The human visual system also compensates for variations in 
the colour of ambient lighting, without our being aware that it 
is happening. This is called Colour Constancy. Be aware 
that some cameras have in-built colour correction, which 
may not be obvious and could confuse a learning system.


Segmenting Coloured Images

However, this has little direct relevance for our primary 
objective: building vision systems that can inspect, or 



measure, industrial artifacts. For this purpose, the real need 
is for increasing the range of methods for segmenting 
coloured images. 


When we consider grey-scale images, there were two 
approaches:


Edge-based, use an edge-detector function

Region-based. The main tool is thresholding. 


We can now extend this choice to include both colour-edge 
detection and region identification based on colour.


Detecting Edges

When we are presented with a colour image, an obvious 
approach is to convert it to a grey-scale version and then 
apply an edge-detector, such as one of those discussed in 
Chapter 4. However, this does not always detect edges in a 
satisfactory way. Figure 6.9 illustrates this. Sometimes, it is 
better to select just one of the RGB channels before 
applying the edge detector. However, this can lead to, say, a 
red-mauve edge being missed in the R-image. [CL] 


In [CR], green-cyan, cyan-yellow and yellow-grey edges are 
almost invisible in the G-image. 


The images obtained by applying an edge detector to the 
R-, G-, B-image individually can be combined to give a 
better result. In [BR], we see that all of the edges have been 
detected successfully by doing this. 




Figure 6.10 shows colour edges found on an image derived 
from a piece of dress fabric. This time, combining the results 
of applying edge detectors to the G- and B-images gives 
good results, even though the R-image has been ignored.


Colour Clusters

In order to understand how a vision system recognise 
colours, we need to introduce the concepts of  RGB space 
and Colour Scattergram. These will provide us with a 
convenient way to visualise and understand the range of 
colours present in an image and are important tools in 
helping to design an effective colour recognition filter.


For a given pixel in a colour image, a standard camera 
produces three outputs, which we will denote by r, g and b. 
Together, they define one point in a 3-dimensional space, 
called RGB space. Now, let us project every pixel in the 
input image into RGB space. This generates a cloud of 
points, generating the RGB scattergram. (Figure 6.11) An 
image containing block colours that are obviously distinct 
from one another, will generate a cloud with dense local 
concentrations (clusters) of points in RGB space. Other 
regions are relatively sparsely populated. (Figure 6.11 and 
Figure 6.12) Clustering occurs because pixels that have 
similar colours are mapped into points in RGB space that 
are close to each other. In order  to understand the cluster 
structure properly, more that one view of the the RGB 
scattergram may be needed. (Figure 6.13) [The MATLAB 
software package was used to produce these scattergram 
plots and enables us to perform a controlled "flight" around 
the RGB space.] Each point in the RGB scattergrams shown 



in Figures 6.11 - 6.13 has been rendered with the 
corresponding pixel colour. This emphasises the fact that 
different parts of RGB space can be associated with the 
familiar named colours: "red', "green", "blue", "orange", etc.


Consider the cloud of points in RGB space associated with 
the surface of a ripe ("red") tomato. This scattergram has a 
single distinct cluster, which we shall denote by T. Suppose 
we now generate the RGB scattergram for a "red" pepper. 
This creates another cluster (P). Since "tomato red" and 
"pepper red" are perceived as being similar shades of "red", 
we might expect clusters T and P to be very close to one 
another, perhaps even overlapping. That part of the RGB 
space associated with "red" (R) is bigger than both T and P; 
R also includes "blood red", "strawberry red" etc. With 
enough time, we could define a closed surface in this space 
that would enclose all examples of "red" that you recognise 
and no other colours. It might be conceptually helpful to 
think of this surface as consisting of several overlapping 
spheres, each one enclosing a subset, such as "tomato 
red", "pepper red" etc. Notice however, that you and I would 
not agree exactly about where those spheres should be 
placed, nor how big they are. A colour recognition filter using 
overlapping spheres to make decisions about what is "red" 
or "not "red" is a real possibility. However such a decision 
surface is defined in mathematical terms, it must be 
designed by analysing numerous colour samples that 
somebody collects. In practice, a Colour Recognition Filter 
must be designed by learning, not by programming.


As in any other language, there is a limited number of 
names in English for colours, so it is common practice to 
invent new names. This gives rise to terms such as 



"buttercup", "canary", "sulphur", "mustard", etc, which are, of 
course, all examples of "yellow". For this reason, we must 
not limit a colour recognition system to identify the "seven 
colours of the rainbow". The machine must be able to learn 
and then identify more esoteric colours, such as "pen-top 
green", “candy-box orange", “peanut-packet blue", etc. We 
must content ourselves with the fact that each application 
requires a separate learning phase for the Colour 
Recognition Filter.


In Figure 6.14, the RGB scattergram for an image with three 
similar shades of yellow and no other colours is viewed from 
four different directions. The outlying points around the main 
clusters have been removed for clarity and the clusters have 
been assigned false colours for the same reason. In this 
example, the three clusters, representing different shades of 
yellow are clearly separate. This fact gives us hope that a 
CRF can be designed to perform quite subtle colour 
recognition.

 

Application: Printed Card

A “picture” playing card provides a convenient model for 
demonstrating colour clustering. The playing card shown in 
Figure 6.15[TL] shows the result of five non-overlapping 
imprints: "red", "yellow", “skin”, "blue" and "black". The RGB 
scattergram is plotted in [TR]. This image, which contains 
only block colours, generates one cluster in RGB space for 
each ink used in printing. Figure 6.15 also makes a valuable 
point: in some instances, the RGB Scattergram can be 
replaced by a 2-dimensional plot. [BL] is easier to visualise 
and it can be processed just like any grey-scale image. In 



the example illustrated here, almost all of the clusters are 
separable in the RB plane. (G is ignored.) However, the 
clusters corresponding to "red" (r) and "yellow" (y) do 
overlap in the RB plane and are not separable without 
reference to the G component as well.  Notice that pseudo-
colour [BR] helps us to visualise sparsely populated regions. 
The significance of Figure 6.15 is that it shows that, in some 
situations, useful colour discrimination can be obtained 
using just two of the RGB components, in this case R and B. 
Notice however, it is not always possible to separate colours 
satisfactorily without using all three components. 


Application: Monitoring Ripening of Fruit

Before we go on to discuss colour recognition in detail, let 
us digress for a moment to look at how the RGB space can 
help us to understand and quantify the colour changes that 
take place as fruit ripens. Imagine that a camera is focussed 
on a single tomato, still hanging on the vine. Let us consider 
a single point on the tomato during the summer and early 
autumn, as its colour changes from green to yellow to 
orange to red. During the ripening season, the RGB values 
of that point effectively trace a path through the colour 
space. If we now consider the whole tomato as it ripens, the 
time-varying collection of RGB vectors describing its overall 
surface colour traces a broader snake-like path.


I did not have access to growing tomatoes, so the point is 
illustrated using a golden-red apple that shows the effects of 
varying degrees of exposure to the sun. Some parts of the 
apple are riper (redder) than others. Figure 6.16 plots the 
RGB clusters for yellow and red regions of an apple. 



Between them is a region where the colour is in transition 
from yellow, where the fruit has not been exposed much to 
direct sunlight, to red where it has been so. It is clear that 
the “transition” region on the apple surface produces a 
colour cluster that lies between the “yellow cluster” and “red 
cluster” in RGB space. 


In Figure 6.17, an image derived from seven bananas at 
various stages of ripening is analysed using only R and G. 
The R-image shows an increase in intensity as ripening 
progresses. (not shown) On the other hand, the G-image 
shows a decrease. [CL and CR] The difference between the 
G-image and R-image, [BL], shows more significant 
changes of colour. Ripening traces a "folded" path, 
resembling the letters "N" or "Z", in RGB space. This can be 
seen using an interactive display but is not easy to illustrate, 
in a single static 2D image. [TR]


Towards Colour Recognition by Machine

We have established that there is a relationship between 
human colour perception and position within RGB space. 
However, we do not know exactly which part of that space 
should be associated with a given colour as named by an 
individual person. Let us restrict  our attention for the moment 
to distinguishing between categories such as "yellow" and "not 
yellow". This should be possible if we can enclose those RGB 
scattergram points corresponding to "yellow" within a closed 
surface, such as a set of overlapping spheres. (Figure 6.18) 
This method of making decisions is called a Compound 
Classifier. If the RGB colour vector defines a point inside any 
one, or more, of the spheres, the decision of the classifier is 



"yellow", otherwise it is "not yellow". To optimise a compound 
classifier, we must decide


How many spheres are needed

Where each sphere should be placed

How big each sphere is. 


Designing a colour recognition filter (CRF) based on a 
compound classifier manually is tedious. Since it involves 
simultaneously adjusting many variables, this will almost 
certainly not lead to an effective filter. A better solution is to use 
an iterative, self-adaptive learning procedure. Several 
procedures have been devised for this but require a lot of 
detailed explanation involving mathematical notation. For this 
reason, it will not be described here. Details can be found at [B 
G Batchelor, Practical Approach to Pattern Classification, 
Plenum, London, 0-30630796-0, 1974, ISBN ] 


An alternative approach is to use a random access memory 
(RAM) chip is to remember all of the colours assigned to all of 
the points in RGB space. (Figure 6.19) A commonly used 
standard for representing images in digital form ("24 bit colour") 
uses 8 bits to represent each of the RGB components. This  
allows 16,777,216 different colours to be defined and is 
adequate for almost all video applications. Recall that a 
standard memory card for a digital camera has a thousand 
times this capacity and costs about €20. A CRF requires only a 
very small proportion of the storage available in a standard 
desk-top computer


Hue Saturation and Intensity 
So far, we have assumed that we need to take intensity into 
account when recognising colour. In practice we can often 
discard intensity; over a wide range of brightness levels, 



human beings are able discriminate colours on a surface 
independently of brightness. This will result in a 
simplification that will allow us to gain an important intuitive 
understanding of the range of colours in an image through 
the use of a 2-dimensional Colour Map.


Hue, saturation and intensity (HSI) were introduced in 
Chapter 3 with no detailed explanation about how they can 
be calculated from the RGB components. Video cameras 
generate RGB signals naturally because there are three 
different light sensors, each with a different colour filter in its 
optical path. The HSI method of characterising colour was 
devised as a superior means of modelling the human visual 
system. 


Figure 6.20 shows the RGB space with the so-called Colour 
Triangle superimposed on it. [This is sometimes called the 
Maxwell Triangle in honour of James Clerk Maxwell.]  At the 
point O in [TL], the values of R, G and B are all zero. All 
points along the line OPQ have the same hue (H) and 
saturation (S) values; only intensity (I) varies along this line. 
P is the point of intersection of this line with the colour 
triangle. The HS values for all of the points along this line 
can be specified by the position of P within the colour 
triangle. H is measured by the angular position of P relative 
to some arbitrarily chosen reference axis. In Figure 6.20 this 
is the line from the centre of the colour triangle (C) to the 
corner corresponding to red. Notice that, H is measured by 
an angle, and is therefore cyclic. Saturation is measured by 
the distance from C to P. Intensity is measured by the 
distance along the line OQ. These are conceptual 
descriptions of HSI; the precise mathematical details do not 
matter for our present discussion. Let it suffice to say that 



HSI can all be calculated by evaluating standard formulae 
based on RGB. 


Colour Recognition Filter  (CRF)

A colour scattergram in the HS plane gives us the 
information we need to design an effective colour 
recognition filter. Designing the CRF will benefit from the 
fact that the 2-dimensional HS scattergram indicates the 
range of colours in an image just as well as the 3-
dimensional RGB scattergram but is easier to understand 
and manipulate. We will see several examples of HS 
scattergrams later.


The colour recognition filter employs a so-called Colour 
Map. This can be derived in a number of different ways, 
often by applying familiar image processing operators to the 
HS scattergram. Sometimes, a more effective colour map is 
obtained by employing human intelligence: manually 
drawing around clusters in the HS scattergram. The colour 
map consists of a grey-scale (or pseudo-colour) image. 
Each entry in the colour map is a number, which we may 
associate with one of the familiar colour terms, such as 
"blue", "yellow", "cyan", "magenta", etc.


A CRF has two distinct phases of operation. 

Training: Plot the HS scattergram. Process/ annotate it 
to derive the colour map

Naming colours: For each pixel. consult the colour map 
to find the appropriate colour “name”. (Figure 6.21) This 
may be a single number (grey-scale intensity value), or 
three numbers (pseudo-colour component values).




Notice that a colour recognition filter can be implemented 
using a single look-up table, although Figure 6.21 suggests 
that two are needed. In other words, Figure 6.21[BL] is 
therefore an implementation of the idea implicit in Figure 
6.19


There remains one important and as yet unspecified task: 
deriving the colour map. This may be done by applying 
image processing functions to the scattergram in the HS 
plane, manually drawing on it, or a combination of the two


It is important to note the following points:

• Programming a colour recognition filter is based on a 

collection of colour samples chosen by a person (or a 
committee of experts) who we call the Teacher. 


• There is no universal design procedure for a machine 
to recognise colour; it involves experimentation and 
interaction between the teacher and the device/
program implementing the CRF. (Figure 6.22)


After collecting the colour samples, the next step is to 
generate the HS scattergram. (Figure 6.23[TR]) This is then 
processed and interpreted to create the colour map. (Figure 
6.23[CL]) A lot of experimentation is sometimes needed to 
generate a really useful colour map. This typically involves


• Blurring, to “join up” fragmented spots in the HS plane

• Thresholding

• Noise reduction by binary filtering

• Blob-size adjustment. Making blobs in the colour map 

bigger allows the filter to accept a wider range of 
colours. (This is called Colour Generalisation.)




• Pseudo-colouring (This is really only useful as an aid 
to understanding, as it does not provide a good basis 
for further image processing).


We emphasise that this is just the beginning of what may be 
a long experimental process to design a CRF.. 


Figure 6.23 illustrates a typical CRF design. Notice that a 
CRF can recognise single colours, as shown in Figure 
6.23[BL] (“red’) and [BR] (“skin”, short for "white skin"), or 
multiple colours in [CR]. We have used pseudo-colours for 
illustrative purposes only. Figure 6.23[CL] & [CR] could be 
presented in monochrome, which would not be so clear - or 
pretty!


Colour Generalisation

Figure 6.24 shows that a CRF is potentially able to make 
fine colour discriminations. The HS scattergram for these 
three similar shades of yellow has three fuzzy but separate 
clusters. [TR] Thresholding the HS scattergram produces 
three separate blobs, which have been pseudo-colour 
coded for clarity of illustration. [CL] This image was used as 
the colour map for the CRF, which was then reapplied to the 
input image. The three yellow areas are separated quite 
well, although there are some black areas indicating pixels 
whose colours were not recognised. [CR] The blobs in the 
colour map were then enlarged. [BL] The CRF then 
generated an image has far fewer black pixels. [BR] Initially  
the CRF recognised quite specific colours because the 
blobs in the colour map were quite small. By increasing their 
size, it accepts a wider variety of similar colours. Hence, we 
use the term Colour Generalisation. Figures 6.24 - 6.32 



present results from images derived from a range of 
different scenes.  

   

Representations of Colour

Colour is a concept; it exists only in the human mind and 
does not have a well-defined physical reality Two people 
may disagree about the colour name that they should 
associate with a particular object surface. More people may 
agree with you about the naming of a set of colour samples 
than they do with me. You may be able to distinguish more 
colours than I can. (I am not colour blind.) But there is no 
question about who is correct about naming a colour, neither 
of us is “right” and the other “wrong”. However, in the 
context of thof our present discussion, we must take one 
person’s opinion as defining “the truth”. To obtain a 
consensus, we might prefer to rely on a vote in a committee. 
We refer to the person/committee who will define the 
colours for our experimental work as the “teacher”. He/she/
they will typically collect a set of samples of the particular 
product that we wish to inspect. The experimental work is 
then based on this collection alone. In this way, the teacher 
defines “the truth”. 


When designing a Colour Recognition Filter, we try to 
emulate the teacher’s ability, for example, to inspect 
bananas, we need to distinguish "yellow" from "not yellow". 
As far as we are concerned the latter is a valid colour 
category. How could we convey the result of such a study to 
another person, perhaps in another country, where the 
natural light and working language are different? One 
possible approach is to match the colour at one point on 



each banana to a set of standard colours. Such a collection 
forms what is termed as called a Colour Atlas. This would be 
extremely laborious and unsatisfactory, because we are 
interested in the whole banana surface, not just one point. 
The CRF provides another approach and is based on the 
following assumptions:

• The teacher cannot properly define a colour class, such 

as “yellow” but can select numerous samples of what he/
she/they recognise(s) as that colour.


• We can buy good-quality RGB cameras cheaply. The high 
image quality achieved by standard off-the shdigital 
cameras provides ample evidence of this.


• The design and deployment of a CRF are performed in 
fixed lighting conditions. 


•
Figure 6.33 shows how information flows during the various 
stages of designing a CRF. It is evident that “colour” is 
represented at several different levels: 


• Mental  The concept of a colour, such as “yellow”, 
originates in the human mind but it cannot be defined 
precisely. 


• Physical 1 A plentiful collection of colour samples is 
gathered by the teacher


• Physical 2 Light emitted by a lamp of constant colour 
falls on a surface. The spectrum of the light scattered 
from that surface has been modified by its chemical 
and physical make-up.


• Video The camera converts the light it receives from 
that surface into a pattern of electric charges. This is, 
in turn transformed, into a digital format, with three 
components: R-image, G-image and B-image.




• Geometric 1 A scattergram is created in the HS plane. 
This is a grey-scale picture, typically containing a few 
fuzzy spots and ill-defined cloud-like features. 


• Geometric 2  The HS scattergram image can be 
processed, for example using techniques such as 
those described in Chapter 4. Typically, it is filtered and 
thresholded. Deciding what processing is appropriate 
here is a matter of human judgement,


• Geometric 3 The thresholded image consists of a 
number of blobs and some snow-like noise. The latter 
is usually removed by judiciously chosen binary 
morphology operations, similar to those discussed in 
Chapter 5.


• Geometric 4 The remaining blobs are enlarged to 
achieve some generalisation during the colour 
recognition process. Again, this relies on human 
judgement.


• Iconic The enlarged blobs are approximated by a set 
of overlapping discs. Each of these is defined by its 
radius and two position coordinates. 


• Parametric The list of disc-radii and position 
coordinates allows the blob structure to be represented 
approximately by a relatively small number of numeric 
values.


• Symbolic Finally, we can associate this parameter list  
with the teacher’s name for the colour.


So, a colour class, such as “yellow” can be described by a 
sequence of numbers in the following format:


{[R1,X1,Y1], [R2,X2,Y2], ..., [Rn, Xn,Yb]}

where 


[[X1,Y1], [X2,Y2],…,[Xn,Yn]] define the disc positions	




This allows a CRF to be reproduced exactly, any  number of 
times. Of course, the duplicate CRFs have exactly the same 
deficiencies, compared to the teacher, as the original.


Addendum: Lighting 
The accuracy of a CRF is critically dependent on the 
stability of the lighting, in terms of both colour and the 
direction of illumination.  While the human eye is able to 
compensate for subtle changes in the colour of lighting, a 
camera does not naturally do so. For this reason, subtle 
changes in lighting might cause a major malfunction in a 
vision system may but go totally unnoticed by personnel 
nearby. The sensitivity of camera-based systems to the 
colour of lighting is demonstrated in Figure 6.8. In these 
example, the chemical composition of the surface material 
determines its response to lighting variations. In Figures 
6.34 & 6.35 periodic micro-structures are responsible for 
major alterations in the appearance of a surface. This effect 
is not uncommon and, if these materials are to inspected by 
machine, they must be viewed under carefully controlled 
lighting conditions. Both the position and colour of the light 
source(s) must be constant. Many types of lamps change 
colour as they age, so this must also be taken into account 
when designing a CRF.  


.



