
Blobs & Texture
Most vision applications ultimately require the analysis of binary images 
because they are easier to measure than colour or grey-scale. Images, 
captured from a camera must be processed first, to yield a binary image, 
which may then be processed further. This pre-processing might, for example, 
be edge-detection filtering, followed by thresholding. Finally, measurements 
are taken on the resulting binary image. The observed and expected values of 
a range of measurements are then compared. This may consist of a very 
simple check, for example, that a single metric value lies within defined limits. 
However, it might be very much more sophisticated, involving advanced logical 
reasoning. 

 Figure 5.1 illustrates the broad range of binary images that we need to 
consider. There are several important types, including

• Simple blob (e.g.silhouette of a con-rod, slice of bread, cam, leaf)
• Complicated blobs (e.g. cake-decoration patterns)
• Multiple blobs (e.g. structured lighting, shoe parts, )
• Images with fragmented features and a noisy background.(e.g. crack)
• Texture (e.g. bread texture, rattan cane)

A figure in a binary image, is properly called a binary object, but for 
convenience, it will be called a blob. The formal definition of a binary object 
requires that there is a continuous path of white pixels joining any two given 
white points in that blob. ( Figure 5.2) What constitutes a "continuous path" 
requires some explanation. This relies on the concept of connectivity and what 
constitutes neighbouring pixels. ( Figure 5.3)

Blobs
Your own informal idea of what constitutes a blob is perfectly satisfactory for 
our present purposes. A binary image can, of course, contain one or more 
blobs. It is customary to discuss the processing of white blobs. This is merely a 
convention; black blobs often arise naturally. If we wish to analyse black blobs, 
we simply negate the image first. Throughout this chapter, we will assume that 
we are analysing and measuring white blobs. The analysis of a blob can often 
be simplified by measuring each of its component parts, such as "holes" and 
"bays" separately. ( Figure 5.4)

Texture
Many natural and artificial surfaces generate textured binary images after 
processing. ( Figure 5.5) It is not sensible to try and measure each of the 
constituent blobs an such an image. Instead statistical analysis methods are 
more appropriate. We will see how the analysis of binary-image texture can be 
made simpler by selective filtering, based on concepts of distance (within an 
image) and neighbourhood.

Special type of grey-scale image 
A binary image can be regarded as a special type of grey-scale image. So, 
some of the image processing operations described in the previous chapter 
can be applied with good effect to binary images. We will see several 
instances of this as we progress. However, binary images can be processed in 
other ways that have no counterpart for grey-scale images. Without resorting 
to mathematical terminology, it is sometimes very difficult to explain how binary 
image processing operators work, although describing what they do may be 
trivial. For example, we will illustrate a procedure, called the Convex Hull, that 
effectively places a rubber band around a blob. It is not nearly so easy to 
explain how this can be achieved as it is to describe its function.

Array and edge-based representations of a blob 
In Chapter 3, we described a binary image as a 2-dimensional array whose 
elements are allowed to have only two possible values. This is a natural format 
for images derived from a camera containing an array of photo-sensors. 
However, as we will see later that, sometimes, other image representations 
are more convenient. Some of these rely on describing the path followed by a 
"bug" as it travels around the edge of a blob. This exploits the fact that only the 
edge pixels are needed to define a blob completely. Edge-following generates 
less data than the array representation requires. For some operations, 
computer programs to manipulate edge-sequence representations are often 
simpler to write and understand. For example, detecting corners and edge 
smoothing are better defined in terms of edge following than an array of 0s 
and 1s. However, remember that video cameras initially generate image data 
in array format and this must be converted to an edge-tracing description 
before the benefits of the latter are enjoyed.

Separating blobs
We will concentrate on processing images containing a single blob. In order to 
justify this, we need to show that we are not restricting the scope of our 
discussion unduly. There are several techniques for separating the component 
parts of a multi-blob image. (See Figure 5.6.} Again, the details of the 
calculation needed to do this are beyond the scope of this chapter. Let it 
suffice to say that it is possible to isolate complex inter-twined blobs. ( Figure 
5.7) A program can isolate each blob in turn very quickly, discarding small/
large ones at will. For example, programs can find the blob with the largest 
area, or discard those consisting of fewer than a given size. No human being 
can match the speed of a program! We can even use the same methods to 
plot a route through a complicated maze, give its plan view. ( Figure 5.8) There 
is an obvious application for this in planning conductor routing on printed 
circuit boards

A note on the illustrations in this chapter: As in Figure 5.8, we will sometimes 
display a multi-level image, or pseudo-colour image, so that  several different 
binary images can be superimposed and compared to each other. For a similar 
reason, an outline will sometimes be superimposed on other blob features. 

Applying Grey-scale operators to Binary Images
There is only one binary monadic operator: the binary equivalent of grey-scale 
negation. This is called Inversion, or sometimes Negation. As would be 
expected, white pixels become black; and black pixels are mapped to white. 
( Figure 5.9) 

There are just three binary dyadic operators:
• AND Each pixel in the output image is white if the pixels at the 

corresponding positions in the two input images are both white. 
Otherwise, it is set to black.

• OR Each pixel in the output image is white if either of the pixels at the 
corresponding positions in the two input images is white. Otherwise, it 
is set to black.

• Exclusive OR (XOR) Each pixel in the output image is white, if the 
pixels at the corresponding positions in the two input images are 
different. If they are the same, it is set to black.

Sometimes, it is helpful to think of a binary image as being a simplified grey-
scale image in which there are just two levels: 0 (black)and 255 (white) 
Applying a blurring operator to such an image results in a grey-scale image 
that has intensity values covering the whole range [0,255]. By thresholding the 
result, a new binary image is created in which the edges are smoother than in 
the original. This will be illustrated and discussed in more detail later, where it 
will be compared to other methods for edge smoothing. 

The grey-scale operators row-integration and row-maximum functions can also 
perform important functions when they are applied to binary images, ( Figure 
5.10) Two related operators are also illustrated here. The first of these allows 
the length of each horizontal chord across the blob to be measured. ( Figure 
5.10[BL]) The second finds the centre of each horizontal chord. ( Figure 
5.10[BR]) Figure 5.11 demonstrates a naive procedure for distinguishing two 
similar shapes using row-integration. This example is important because fitting 
the wrong car brake-pad could lead to a fatal accident.

We turn our attention now to demonstrate how edges in binary images can be 
found using operators that we have already encountered. ( Figure 5.12) 
Shifting the image, subtracting the original from the result and then 
thresholding can be used to highlight horizontal, vertical, or diagonal edges. 
However, here are more efficient ways to achieve the same result and we will 
turn our attention now to consider these as members of a much broader class 
of operator.

Neighbourhood Functions 
Like grey-scale local operators, Binary Neighbourhood Functions (BNFs) 
calculate the intensity of each output pixel from the values in a group of input 
pixels. Again, the intensity for a single output pixel is calculated from a 
compact group of nearby pixels. The same process is repeated, once for each 
output pixel. Initially, consider the 9 pixels within a 3x3 processing window, 
called a Structuring Element (SE). We can easily describe several functions of 
this type quite succinctly. Each of the functions described below, sets the 
output pixel white under the conditions specified. All other output pixels are set 
to black. ( Figure 5.13)

• Dilating white areas: Any one, or more, of the 8-neighbours is white. 
[This expands all white objects by one pixel in each direction. Two 
blobs that are very close together may "fuse" into a single entity.]

• Eroding white areas: All 8-neighbours are white. [This shrinks all white 
objects by one pixel on each side. Very small blobs may disappear 
altogether and narrow streaks begin to disintegrate.]

• Isolating black pixels: The central pixel is black and its 8-neighbours 
are all white. All other pixels are set to black.

• Isolating white pixels: The central pixel is white and its 8-neighbours 
are all black. All other pixels are set to black.  

• Detecting limb ends of matchstick-figures: The central pixel is white and 
exactly one 8-neighbour is white. [We will discuss the generation and 
importance of matchstick-figures later.] 

• Dismembering matchstick-figures: The central pixel is white and exactly 
two 8-neighbours are white. Cut the match-stick here

• Detecting joints of matchstick-figures: The central pixel is white and 
three or more 8-neighbours are white. 

• Majority filtering: The majority of the pixels within the 3x3 
neighbourhood are white.  [This provides an effective filter for reducing 
the effects of camera "noise".]

• Detecting inside-edge: The central pixel is white and at least one of its 
8-neighbours is black. [This detects pixels adjacent to the black-white 
boundary but lying inside the blob.]

• Detecting outside-edge: The central pixel is black and at least one of its 
8-neighbours is white. [This detects background pixels adjacent to the 
edge.)

Recall that, in the previous chapter, we saw that a grey-scale local-averaging 
operator can effectively count the white pixels in a 3x3 region. Another 3x3 
grey-scale operator can detect any given logical pattern of 0s and 1s. There 
are more efficient ways to do this but it is helpful to keep this idea in mind 
when reading Figure 5.13.

Dilation and erosion
These two important operators require special attention. As described above

• Dilation is the process of making the output pixel white if it or any of its 
8-neighbours is white. 

• Erosion is the process of making the output pixel white only if it and all 
of its 8-neighbours are white.

Notice the following points. (See  Figures 5.14 - 5.18.)
• Repeating dilation with a 3x3 SE, produces the same result as that 

from dilation with a 5x5 pixel SE. ( Figure 5.14)
• Performing 3x3 dilation N times produces the same result as that from 

dilation with a (2N+1)x(2N+1) pixel SE.
• Performing 3x3 erosion N times produces the same result as that from 

erosion with a (2N+1)x(2N+1) pixel SE.
• Dilation, or erosion, followed by exclusive OR draws an edge contour 

for each blob. ( Figure 5.s 15 & 16)
• Dilation followed by erosion (called closing) eliminates small black 

spots. Larger spots can be deleted by increasing the size of the SE. 
( Figure 5.17)

• Erosion followed by dilation (called opening) eliminates white dark 
spots. Larger spots can be deleted by increasing the size of the SE.

• Negating a binary image then dilating it has the same effect as erosion 
followed by negation.

• Performing dilation, erosion and then XORing the result with the 
original detects thin black arcs and small black spots. ( Figure 5.18)

Generalising the Scope
Dilation and erosion can be made even more useful by generalising them by 
reforming the shape of the structuring element. Here is a generalised version 
of erosion. ( Figure 5.19)

1. Construct a "mask" consisting of a single small blob. This is a more general 
use of the term Structuring Element (SE). 

2. An SE designed to detect the apex of a sans serif, upper-case letter "A" 
might  resemble "⋀"  or "⋂", while two SEs (⊢ and ⊣) would be required to 
identify the joints on such a letter. 

3. Scan the image, in turn placing the SE in every possible position over the 
input image. 

4. At each position, if every point in the SE lies over a white pixel in the input 
image, the pixel that is closest to the centre of the SE in the output image is 
set to white. Otherwise, it is set to black.

The equivalent procedure for a generalised version of dilation replaces Step 4 
by the following:
4. At each position, if one or more points in the SE lies over a white pixel in the 
image, the pixel that is closest to the centre of the SE is set to white. 
Otherwise, it is set to black. 

Erosion and dilation and combinations of them are called Morphological 
operators. (Morphology: study of form.)  Figures 5.20 - 5.26 indicate some 
possible uses.  Figure 5.20 hints at techniques that are useful for Optical 
Character Recognition (OCR), which is required for reading printed text.  
Figure 5.21 shows how morphology can be used as part of an inspection 
process for cake-decoration patterns, while  Figure 5.22 demonstrates its use 
as a prelude to counting circular objects (peas and soft-drink cans)  Figure 
5.23 uses morphology to detect ring-shaped features (components connecting 
pads) on printed circuit boards.  Figure 5.24 demonstrates how an SE can be 
derived by processing the input image. Also, notice that erosion was not 
applied directly to the original binary image but to a dilated version of it. 
( Figure 5.24[CL]) This makes the process of detecting the elephant motif less 
susceptible to noise and hence more reliable. In  Figure 5.25 morphology is 
applied to identifying playing-card suit symbols.  Figure 5.26[TL]-[CR] shows 
how the teeth on a gear can be isolated so that they can be counted, or 
inspected. The same method was used to detect the "valleys" on an external 
screw thread.  ( Figure 5.26[BL] - [BR])

Position & Orientation
There is no unique measurement of position that suits every situation. ( Figure 
5.27[T]) For example, when a person picks up a hammer, the position of the 
handle is important but, when it is being used, what happens as the other end 
is the thing that really matters. One end of a venomous snake ( Figure 5.27[C]) 
is clearly of far greater significance than the other, even though it may be very 
difficult to decide which it is visually. The garden shears,  Figure 5.27[B], have 
four important points of interest: two handles and two blade tips. Similarly, 
there is no uniquely agreed "significant point of interest" on a blob that defines 
“its position". The point is that there are many ways for a vision system to 
analyse the silhouette of a real-world object in order to guide a robot; every 
application requires individual consideration.

One very popular way to measure blob position is to calculate its geometric 
centroid, or simply centroid. This is the centre of gravity of a thin uniform sheet 
of material that has the same outline as the given blob. The position of the 
centroid can be calculated from a binary array, using a simple formula. 

Although “the orientation” of a blob has no unique definition, the Principal Axis 
is often useful for this purpose. It is also easy (and fast) to compute. The 
principal axis is properly called the axis of minimum second moment.   Figure 
5.28 shows two objects (gear and cam) for which the principal axis is 
unsuitable. Let us return again to the con-rod. A safe lifting point for a small 
vacuum or magnetic gripper is at the centroid. ( Figure 5.29) A large suction 
gripper would not manage a safe lift because there would be an air leak 
outside the object boundary. A 2-finger gripper can be positioned using the 
centroid and principal axis but neither of these is sufficient on its own; further 
calculation is needed. Figure 5.29[BR] shows two well-defined reference 
points for position. The position of the lower point was found using erosion 
using a large circular SE. The upper point is the centroid of the "hole", properly 
called the lake. The line joining them can be used to determine orientation.

Edge-Based Techniques
So far in this chapter, we have concentrated on processing binary images 
represented as a 2-dimensional array of 0s and 1s. As explained in Chapter 2, 
tracing the boundary of a blob can lead to a major reduction in the amount of 
data needed to define it exactly. In addition to saving storage space, edge-
based methods make certain calculations easier, including:

• Separating objects in a multi-blob binary image. ( Figure 5.30)
• Edge smoothing
• Detecting sharp changes of edge direction. (Corners.  Figure 5.31[BR])
• Feature detection: finding long straight-line edge segments.
• Calculating the position of the centroid 
• Calculating the perimeter. ( Figure 5.31) Measuring perimeter is always 

fraught with difficulty!,  Figure 5.32) 
• Calculating extreme points: top, bottom, left-most & right-most points
• Fitting the minimum-area bounding rectangle. ( Figure 5.33[TL] & 34)
• Fitting the minimum-area bounding octagon. Sides at 0˚,45˚,90˚,135˚, ..
• Fitting the minimum-area bounding hexadecagon.  Sides at 

0˚,22.5˚,45˚,67.5˚,90˚, ..
• Fitting the minimum-area bounding circle.  ( Figure 5.33[TR])
• Computing the convex hull of a blob. (This is the area enclosed by a 

rubber band stretched around the blob. It encloses the object itself and 
all of its bays. ( Figure 5.33[CL] & Figure 5.34)

• Fitting an ellipse ( Figure 5.33[BR] and Figure 5.35)
• Reducing the blob to a match-stick  ( Figure 5.36 ) Thinning and 

skeletonisation are different ways to do this. ( Figure 5.35)
• Calculating the grassfire transform. ( Figure 5.36[CR)
• Fitting internal circles. ( Figure 5.37)
• Comparing two shapes ( Figure 5.38)
• Locating the edge points at the ends of the largest diameter ( Figure 

5.39[BL]) 
• Finding the maximum & minimum distance from any given fixed point 

(e.g. blob centroid,  Figure 5.39[BR])
• Finding the maximum & minimum distance from any given straight line.
• Finding the position and radius of a circular arc fitted to part of the 

edge. (Local radius of curvature)
• Fitting a curve (e.g. polynomial) to part of the edge. 

Blob Measurements
 Figure 5.39 & Figure 5.40 suggest ways by which a blob can be analysed to 
yield a variety of "anchor points" from which a range of measurements can be 
derived. Using simple geometry, distances, angles and areas can be 
computed from the coordinates of thesenanchor points. For an inspection 
system, it probably does not really matter whether or not these relate directly 
to the primary features that the application engineer specifies as important. 
Remember the vision engineer's maxim

If a product feature is not as it should be, it is wrong!
Suppose, for example, that one of the round "leaves" of the club symbol 
( Figure 5.39[BR]) were bent, one or more of the red and yellow crosses would 
be misplaced. In this one example, it is not difficult to formulate multiple (over 
50) different measurements:  distance, angle and area. (Figure 5.41) However, 
this approach is not systematic. The following idea tries to make it so. 

Concavity Trees
A concavity tree (CT) provides a way to describe blob shapes using a 
recursive construction process. The convex hull (CH) is central to this 
approach. ( Figures 5.40 - 5.42) The CH of a blob is unchanged by moving or 
rotating the blob it encloses. The difference between a blob and its CH is 
called its convex deficiency (CD). It consists of a number of separate bays and 
lakes. Together, these are referred to as concavities. Since Figure 5.42 
contains no lakes, we will refer only to bays from now on but lakes are treated 
in just the same way 

Let us consider each bay separately and derive its CH. Think of the various 
shapes created in this way as being cardboard cut-outs, A crude 
approximation to the original shape can be produced by "cutting out" the CHs 
of each bay from the CH of the original blob. To obtain a better approximation, 
we "stick in" the CHs of the CD of each bay. This process continues 
recursively indefinitely.  Alternating levels in the CT are “cut-outs”, while the 
levels in between are “stick ins”

Figure 5.42 shows a truncated CT in which each node represents a convex 
shape that has two associated measurements: its area and the area of its CH. 
As we saw earlier, there is no shortage of ideas for possible measurements. 
The labels attached to the nodes in a concavity tree can be multi-element 
vectors, whatever is convenient.

Concavity trees have some interesting and desirable features:
• We can normalise the CT so that is independent of the orientation of 

the original blob.
• The structure of the CT is independent of the size of the original blob
• The CT is independent of the position of the original blob.
• The CT combines local and global shape measurements in a 

systematic way.
• A wide variety of shape measurements can be incorporated in a CT, to 

label its nodes.
• It is possible to use a CT to determine whether a blob is "heads up" or 

"tails up". (Think of the CT as representing parts of a glove.) This 
defines the chirality. (Figure 5.41)

• A fully developed CT allows the original blob to be reconstructed 
exactly, using only convex polygons.

• A CT can be truncated, if necessary, to whatever level of precision is 
needed for the application 

Inspecting objects represented by matching concavity trees involves some 
interesting Artificial Intelligence techniques but these are beyond the scope of 
our present discussion.

Three Final Remarks
• Numeric shape descriptors do not always provide a complete or satisfactory 

representation of a binary image. Figure 5.43 shows four situations where 
symbolic output signals are required.

• A good vision engineer exploits all available Application Knowledge. Figures 
5.44 & Figure 5.45 

• We still need subtle, crafty, cunning, artful, devious human intelligence!


