
Blobs & Texture
Most vision applications ultimately require the analysis of binary images
because they are easier to measure than colour or grey-scale. Images,
captured from a camera must be processed first, to yield a binary image,
which may then be processed further. This pre-processing might, for example,
be edge-detection filtering, followed by thresholding. Finally, measurements
are taken on the resulting binary image. The observed and expected values of
a range of measurements are then compared. This may consist of a very
simple check, for example, that a single metric value lies within defined limits.
However, it might be very much more sophisticated, involving advanced logical
reasoning.

 Figure 5.1 illustrates the broad range of binary images that we need to
consider. There are several important types, including

• Simple blob (e.g.silhouette of a con-rod, slice of bread, cam, leaf)
• Complicated blobs (e.g. cake-decoration patterns)
• Multiple blobs (e.g. structured lighting, shoe parts,)
• Images with fragmented features and a noisy background.(e.g. crack)
• Texture (e.g. bread texture, rattan cane)

A figure in a binary image, is properly called a binary object, but for
convenience, it will be called a blob. The formal definition of a binary object
requires that there is a continuous path of white pixels joining any two given
white points in that blob. (Figure 5.2) What constitutes a "continuous path"
requires some explanation. This relies on the concept of connectivity and what
constitutes neighbouring pixels. (Figure 5.3)

Blobs
Your own informal idea of what constitutes a blob is perfectly satisfactory for
our present purposes. A binary image can, of course, contain one or more
blobs. It is customary to discuss the processing of white blobs. This is merely a
convention; black blobs often arise naturally. If we wish to analyse black blobs,
we simply negate the image first. Throughout this chapter, we will assume that
we are analysing and measuring white blobs. The analysis of a blob can often
be simplified by measuring each of its component parts, such as "holes" and
"bays" separately. (Figure 5.4)

Texture
Many natural and artificial surfaces generate textured binary images after
processing. (Figure 5.5) It is not sensible to try and measure each of the
constituent blobs an such an image. Instead statistical analysis methods are
more appropriate. We will see how the analysis of binary-image texture can be
made simpler by selective filtering, based on concepts of distance (within an
image) and neighbourhood.

Special type of grey-scale image
A binary image can be regarded as a special type of grey-scale image. So,
some of the image processing operations described in the previous chapter
can be applied with good effect to binary images. We will see several
instances of this as we progress. However, binary images can be processed in
other ways that have no counterpart for grey-scale images. Without resorting
to mathematical terminology, it is sometimes very difficult to explain how binary
image processing operators work, although describing what they do may be
trivial. For example, we will illustrate a procedure, called the Convex Hull, that
effectively places a rubber band around a blob. It is not nearly so easy to
explain how this can be achieved as it is to describe its function.

Array and edge-based representations of a blob
In Chapter 3, we described a binary image as a 2-dimensional array whose
elements are allowed to have only two possible values. This is a natural format
for images derived from a camera containing an array of photo-sensors.
However, as we will see later that, sometimes, other image representations
are more convenient. Some of these rely on describing the path followed by a
"bug" as it travels around the edge of a blob. This exploits the fact that only the
edge pixels are needed to define a blob completely. Edge-following generates
less data than the array representation requires. For some operations,
computer programs to manipulate edge-sequence representations are often
simpler to write and understand. For example, detecting corners and edge
smoothing are better defined in terms of edge following than an array of 0s
and 1s. However, remember that video cameras initially generate image data
in array format and this must be converted to an edge-tracing description
before the benefits of the latter are enjoyed.

Separating blobs
We will concentrate on processing images containing a single blob. In order to
justify this, we need to show that we are not restricting the scope of our
discussion unduly. There are several techniques for separating the component
parts of a multi-blob image. (See Figure 5.6.} Again, the details of the
calculation needed to do this are beyond the scope of this chapter. Let it
suffice to say that it is possible to isolate complex inter-twined blobs. (Figure
5.7) A program can isolate each blob in turn very quickly, discarding small/
large ones at will. For example, programs can find the blob with the largest
area, or discard those consisting of fewer than a given size. No human being
can match the speed of a program! We can even use the same methods to
plot a route through a complicated maze, give its plan view. (Figure 5.8) There
is an obvious application for this in planning conductor routing on printed
circuit boards

A note on the illustrations in this chapter: As in Figure 5.8, we will sometimes
display a multi-level image, or pseudo-colour image, so that several different
binary images can be superimposed and compared to each other. For a similar
reason, an outline will sometimes be superimposed on other blob features.

Applying Grey-scale operators to Binary Images
There is only one binary monadic operator: the binary equivalent of grey-scale
negation. This is called Inversion, or sometimes Negation. As would be
expected, white pixels become black; and black pixels are mapped to white.
(Figure 5.9)

There are just three binary dyadic operators:
• AND Each pixel in the output image is white if the pixels at the

corresponding positions in the two input images are both white.
Otherwise, it is set to black.

• OR Each pixel in the output image is white if either of the pixels at the
corresponding positions in the two input images is white. Otherwise, it
is set to black.

• Exclusive OR (XOR) Each pixel in the output image is white, if the
pixels at the corresponding positions in the two input images are
different. If they are the same, it is set to black.

Sometimes, it is helpful to think of a binary image as being a simplified grey-
scale image in which there are just two levels: 0 (black)and 255 (white)
Applying a blurring operator to such an image results in a grey-scale image
that has intensity values covering the whole range [0,255]. By thresholding the
result, a new binary image is created in which the edges are smoother than in
the original. This will be illustrated and discussed in more detail later, where it
will be compared to other methods for edge smoothing.

The grey-scale operators row-integration and row-maximum functions can also
perform important functions when they are applied to binary images, (Figure
5.10) Two related operators are also illustrated here. The first of these allows
the length of each horizontal chord across the blob to be measured. (Figure
5.10[BL]) The second finds the centre of each horizontal chord. (Figure
5.10[BR]) Figure 5.11 demonstrates a naive procedure for distinguishing two
similar shapes using row-integration. This example is important because fitting
the wrong car brake-pad could lead to a fatal accident.

We turn our attention now to demonstrate how edges in binary images can be
found using operators that we have already encountered. (Figure 5.12)
Shifting the image, subtracting the original from the result and then
thresholding can be used to highlight horizontal, vertical, or diagonal edges.
However, here are more efficient ways to achieve the same result and we will
turn our attention now to consider these as members of a much broader class
of operator.

Neighbourhood Functions
Like grey-scale local operators, Binary Neighbourhood Functions (BNFs)
calculate the intensity of each output pixel from the values in a group of input
pixels. Again, the intensity for a single output pixel is calculated from a
compact group of nearby pixels. The same process is repeated, once for each
output pixel. Initially, consider the 9 pixels within a 3x3 processing window,
called a Structuring Element (SE). We can easily describe several functions of
this type quite succinctly. Each of the functions described below, sets the
output pixel white under the conditions specified. All other output pixels are set
to black. (Figure 5.13)

• Dilating white areas: Any one, or more, of the 8-neighbours is white.
[This expands all white objects by one pixel in each direction. Two
blobs that are very close together may "fuse" into a single entity.]

• Eroding white areas: All 8-neighbours are white. [This shrinks all white
objects by one pixel on each side. Very small blobs may disappear
altogether and narrow streaks begin to disintegrate.]

• Isolating black pixels: The central pixel is black and its 8-neighbours
are all white. All other pixels are set to black.

• Isolating white pixels: The central pixel is white and its 8-neighbours
are all black. All other pixels are set to black.

• Detecting limb ends of matchstick-figures: The central pixel is white and
exactly one 8-neighbour is white. [We will discuss the generation and
importance of matchstick-figures later.]

• Dismembering matchstick-figures: The central pixel is white and exactly
two 8-neighbours are white. Cut the match-stick here

• Detecting joints of matchstick-figures: The central pixel is white and
three or more 8-neighbours are white.

• Majority filtering: The majority of the pixels within the 3x3
neighbourhood are white. [This provides an effective filter for reducing
the effects of camera "noise".]

• Detecting inside-edge: The central pixel is white and at least one of its
8-neighbours is black. [This detects pixels adjacent to the black-white
boundary but lying inside the blob.]

• Detecting outside-edge: The central pixel is black and at least one of its
8-neighbours is white. [This detects background pixels adjacent to the
edge.)

Recall that, in the previous chapter, we saw that a grey-scale local-averaging
operator can effectively count the white pixels in a 3x3 region. Another 3x3
grey-scale operator can detect any given logical pattern of 0s and 1s. There
are more efficient ways to do this but it is helpful to keep this idea in mind
when reading Figure 5.13.

Dilation and erosion
These two important operators require special attention. As described above

• Dilation is the process of making the output pixel white if it or any of its
8-neighbours is white.

• Erosion is the process of making the output pixel white only if it and all
of its 8-neighbours are white.

Notice the following points. (See Figures 5.14 - 5.18.)
• Repeating dilation with a 3x3 SE, produces the same result as that

from dilation with a 5x5 pixel SE. (Figure 5.14)
• Performing 3x3 dilation N times produces the same result as that from

dilation with a (2N+1)x(2N+1) pixel SE.
• Performing 3x3 erosion N times produces the same result as that from

erosion with a (2N+1)x(2N+1) pixel SE.
• Dilation, or erosion, followed by exclusive OR draws an edge contour

for each blob. (Figure 5.s 15 & 16)
• Dilation followed by erosion (called closing) eliminates small black

spots. Larger spots can be deleted by increasing the size of the SE.
(Figure 5.17)

• Erosion followed by dilation (called opening) eliminates white dark
spots. Larger spots can be deleted by increasing the size of the SE.

• Negating a binary image then dilating it has the same effect as erosion
followed by negation.

• Performing dilation, erosion and then XORing the result with the
original detects thin black arcs and small black spots. (Figure 5.18)

Generalising the Scope
Dilation and erosion can be made even more useful by generalising them by
reforming the shape of the structuring element. Here is a generalised version
of erosion. (Figure 5.19)

1. Construct a "mask" consisting of a single small blob. This is a more general
use of the term Structuring Element (SE).

2. An SE designed to detect the apex of a sans serif, upper-case letter "A"
might resemble "⋀" or "⋂", while two SEs (⊢ and ⊣) would be required to
identify the joints on such a letter.

3. Scan the image, in turn placing the SE in every possible position over the
input image.

4. At each position, if every point in the SE lies over a white pixel in the input
image, the pixel that is closest to the centre of the SE in the output image is
set to white. Otherwise, it is set to black.

The equivalent procedure for a generalised version of dilation replaces Step 4
by the following:
4. At each position, if one or more points in the SE lies over a white pixel in the
image, the pixel that is closest to the centre of the SE is set to white.
Otherwise, it is set to black.

Erosion and dilation and combinations of them are called Morphological
operators. (Morphology: study of form.) Figures 5.20 - 5.26 indicate some
possible uses. Figure 5.20 hints at techniques that are useful for Optical
Character Recognition (OCR), which is required for reading printed text.
Figure 5.21 shows how morphology can be used as part of an inspection
process for cake-decoration patterns, while Figure 5.22 demonstrates its use
as a prelude to counting circular objects (peas and soft-drink cans) Figure
5.23 uses morphology to detect ring-shaped features (components connecting
pads) on printed circuit boards. Figure 5.24 demonstrates how an SE can be
derived by processing the input image. Also, notice that erosion was not
applied directly to the original binary image but to a dilated version of it.
(Figure 5.24[CL]) This makes the process of detecting the elephant motif less
susceptible to noise and hence more reliable. In Figure 5.25 morphology is
applied to identifying playing-card suit symbols. Figure 5.26[TL]-[CR] shows
how the teeth on a gear can be isolated so that they can be counted, or
inspected. The same method was used to detect the "valleys" on an external
screw thread. (Figure 5.26[BL] - [BR])

Position & Orientation
There is no unique measurement of position that suits every situation. (Figure
5.27[T]) For example, when a person picks up a hammer, the position of the
handle is important but, when it is being used, what happens as the other end
is the thing that really matters. One end of a venomous snake (Figure 5.27[C])
is clearly of far greater significance than the other, even though it may be very
difficult to decide which it is visually. The garden shears, Figure 5.27[B], have
four important points of interest: two handles and two blade tips. Similarly,
there is no uniquely agreed "significant point of interest" on a blob that defines
“its position". The point is that there are many ways for a vision system to
analyse the silhouette of a real-world object in order to guide a robot; every
application requires individual consideration.

One very popular way to measure blob position is to calculate its geometric
centroid, or simply centroid. This is the centre of gravity of a thin uniform sheet
of material that has the same outline as the given blob. The position of the
centroid can be calculated from a binary array, using a simple formula.

Although “the orientation” of a blob has no unique definition, the Principal Axis
is often useful for this purpose. It is also easy (and fast) to compute. The
principal axis is properly called the axis of minimum second moment. Figure
5.28 shows two objects (gear and cam) for which the principal axis is
unsuitable. Let us return again to the con-rod. A safe lifting point for a small
vacuum or magnetic gripper is at the centroid. (Figure 5.29) A large suction
gripper would not manage a safe lift because there would be an air leak
outside the object boundary. A 2-finger gripper can be positioned using the
centroid and principal axis but neither of these is sufficient on its own; further
calculation is needed. Figure 5.29[BR] shows two well-defined reference
points for position. The position of the lower point was found using erosion
using a large circular SE. The upper point is the centroid of the "hole", properly
called the lake. The line joining them can be used to determine orientation.

Edge-Based Techniques
So far in this chapter, we have concentrated on processing binary images
represented as a 2-dimensional array of 0s and 1s. As explained in Chapter 2,
tracing the boundary of a blob can lead to a major reduction in the amount of
data needed to define it exactly. In addition to saving storage space, edge-
based methods make certain calculations easier, including:

• Separating objects in a multi-blob binary image. (Figure 5.30)
• Edge smoothing
• Detecting sharp changes of edge direction. (Corners. Figure 5.31[BR])
• Feature detection: finding long straight-line edge segments.
• Calculating the position of the centroid
• Calculating the perimeter. (Figure 5.31) Measuring perimeter is always

fraught with difficulty!, Figure 5.32)
• Calculating extreme points: top, bottom, left-most & right-most points
• Fitting the minimum-area bounding rectangle. (Figure 5.33[TL] & 34)
• Fitting the minimum-area bounding octagon. Sides at 0˚,45˚,90˚,135˚, ..
• Fitting the minimum-area bounding hexadecagon. Sides at

0˚,22.5˚,45˚,67.5˚,90˚, ..
• Fitting the minimum-area bounding circle. (Figure 5.33[TR])
• Computing the convex hull of a blob. (This is the area enclosed by a

rubber band stretched around the blob. It encloses the object itself and
all of its bays. (Figure 5.33[CL] & Figure 5.34)

• Fitting an ellipse (Figure 5.33[BR] and Figure 5.35)
• Reducing the blob to a match-stick (Figure 5.36) Thinning and

skeletonisation are different ways to do this. (Figure 5.35)
• Calculating the grassfire transform. (Figure 5.36[CR)
• Fitting internal circles. (Figure 5.37)
• Comparing two shapes (Figure 5.38)
• Locating the edge points at the ends of the largest diameter (Figure

5.39[BL])
• Finding the maximum & minimum distance from any given fixed point

(e.g. blob centroid, Figure 5.39[BR])
• Finding the maximum & minimum distance from any given straight line.
• Finding the position and radius of a circular arc fitted to part of the

edge. (Local radius of curvature)
• Fitting a curve (e.g. polynomial) to part of the edge.

Blob Measurements
 Figure 5.39 & Figure 5.40 suggest ways by which a blob can be analysed to
yield a variety of "anchor points" from which a range of measurements can be
derived. Using simple geometry, distances, angles and areas can be
computed from the coordinates of thesenanchor points. For an inspection
system, it probably does not really matter whether or not these relate directly
to the primary features that the application engineer specifies as important.
Remember the vision engineer's maxim

If a product feature is not as it should be, it is wrong!
Suppose, for example, that one of the round "leaves" of the club symbol
(Figure 5.39[BR]) were bent, one or more of the red and yellow crosses would
be misplaced. In this one example, it is not difficult to formulate multiple (over
50) different measurements: distance, angle and area. (Figure 5.41) However,
this approach is not systematic. The following idea tries to make it so.

Concavity Trees
A concavity tree (CT) provides a way to describe blob shapes using a
recursive construction process. The convex hull (CH) is central to this
approach. (Figures 5.40 - 5.42) The CH of a blob is unchanged by moving or
rotating the blob it encloses. The difference between a blob and its CH is
called its convex deficiency (CD). It consists of a number of separate bays and
lakes. Together, these are referred to as concavities. Since Figure 5.42
contains no lakes, we will refer only to bays from now on but lakes are treated
in just the same way

Let us consider each bay separately and derive its CH. Think of the various
shapes created in this way as being cardboard cut-outs, A crude
approximation to the original shape can be produced by "cutting out" the CHs
of each bay from the CH of the original blob. To obtain a better approximation,
we "stick in" the CHs of the CD of each bay. This process continues
recursively indefinitely. Alternating levels in the CT are “cut-outs”, while the
levels in between are “stick ins”

Figure 5.42 shows a truncated CT in which each node represents a convex
shape that has two associated measurements: its area and the area of its CH.
As we saw earlier, there is no shortage of ideas for possible measurements.
The labels attached to the nodes in a concavity tree can be multi-element
vectors, whatever is convenient.

Concavity trees have some interesting and desirable features:
• We can normalise the CT so that is independent of the orientation of

the original blob.
• The structure of the CT is independent of the size of the original blob
• The CT is independent of the position of the original blob.
• The CT combines local and global shape measurements in a

systematic way.
• A wide variety of shape measurements can be incorporated in a CT, to

label its nodes.
• It is possible to use a CT to determine whether a blob is "heads up" or

"tails up". (Think of the CT as representing parts of a glove.) This
defines the chirality. (Figure 5.41)

• A fully developed CT allows the original blob to be reconstructed
exactly, using only convex polygons.

• A CT can be truncated, if necessary, to whatever level of precision is
needed for the application

Inspecting objects represented by matching concavity trees involves some
interesting Artificial Intelligence techniques but these are beyond the scope of
our present discussion.

Three Final Remarks
• Numeric shape descriptors do not always provide a complete or satisfactory

representation of a binary image. Figure 5.43 shows four situations where
symbolic output signals are required.

• A good vision engineer exploits all available Application Knowledge. Figures
5.44 & Figure 5.45

• We still need subtle, crafty, cunning, artful, devious human intelligence!

