
Chapter 4

256 Shades of Grey

Preamble
When studying vision in nature, we are trying to discover
what data processing is taking place inside a “closed box”.
There is very little opportunity for direct access into either
human or animal brains. Implanted electrodes and PET
scanning have provided some insight into what happens
inside the brain but our knowledge is still very limited. On
the other hand, to develop Machine Vision systems, we
need to decide what processing capabilities to insert into
“the box”. These two pursuits are quite different: studying
natural vision requires analysis, while designing Machine
Vision devices requires synthesis.

How do we know what to put inside “the box”? Some
operations that we use to process digital images were first
tried for no other reason than that they are fast and simple
to perform in a computer. For example, adding (or
subtracting) a fixed number to every intensity value is one
obvious operation that was investigated very early. What
visual effect does such an operation have? Is it useful in
practice? On its own, it is not so, but when it is used in
combination with other functions it is very valuable. We
cannot fully appreciate its benefits until we start to build
sequences of simple processing steps.

A natural first step in our journey through image processing
for Machine Vision is to describe how one image can be
created from another. Often, the goal is to enhance the
visibility of important features, while suppressing others. An
obvious example is negation, which is, of course, familiar to
film photographers. Blurring, enhancing edges, pseudo-
every colouring and thresholding are among the other well-
known operations that we will encounter. In each of these

cases, an image is transformed into another image, with no
distortion of geometry; major image features are still
recognisable, sometimes made more clearly visible,
sometimes less so.

Why begin with grey-scale images when colour is so much
more interesting and appealing? The simple answer is that
we need to take small steps first: colour image processing
is builton the ideas described in this chapter. While binary
images appear to be simpler than grey-scale pictures, the
operations and measurements that we need to perform are
conceptually very different. In practice, processing grey-
scale, or colour, images almost always precedes
transforming to and analysing binary images. The important
features must be enhanced, identified and isolated before
they can be measured.

Families of image processing operations
We can identify several families of processing operations
that we can apply to grey-scale images:

1.Monadic Operators A single image (the input image) is
processed to generate another image (the output image).
Each input pixel is processed independently of all others,
at the same moment. The output image is therefore the
same size and shape, as the input. There is no change of
size, orientation, or geometric distortion. At least some of
the major image features are still identifiable. (The very
point of the processing may be to suppress the visibility
of other features.) For this reason, these said to be point-
by-point operators.

2.Dyadic Operators. Two input images are combined to
generate a third output image. Each corresponding pair of
pixels is processed independently of all others, at the
same moment. Again, there is no geometric distortion.
These are also point-by-point operators

3.Local operators: Again, a single image is processed to
generate another image but the value of every output
pixel is derived from a (compact) group of pixels in the
input image. This process is repeated for all output pixels,
at the same moment. The output image is the same size
and shape, as the input.

4.Image measurements The output is one or more
numbers.

5.Intensity histogram (Or Histogram) This is a list of
numbers describing the statistics of the intensity values in
the image array. It can yield some very valuable
measurements, which can guide further processing. The
histogram is often displayed as a graph.

Point-by-point Operators

Monadic, dyadic and local operators are normally used as
part of a complex processing sequence; they are rarely
used on their own. It is therefore difficult, at this early stage,
to justify them fully. Hence, for the moment, we will simply
demonstrate the effects they produce. Sometimes, they do
improve the visual appearance of an image, but they can
also do the opposite. Even so, they are often be very
effective tools and, for this reason, are essential
components within nearly all artificial vision systems.

Monadic Operators
The operation of a monadic operator is explained in Figure
4.1. A typical pixel, such as that in the ith column and jth row,
is transformed to produce a new value that is then stored in
the same position, [i,j], in the output image.The
transformation by the so-called Mapping Function, may be
achieved by calculation. For example, we may simply add,
or multiply, the intensity of each pixel [i,j] by a constant (a
fixed number). Alternatively, the mapping function may be
implemented using a Look-up Table (LUT, Figure 4.2).
Entries in the table need only be calculated once, which can
save a lot of computation time. It also allows a general class
of dynamic image-to-image transformations, based on prior
measurements, to be performed. Monadic operations
usually leave the image features clearly identifiable. For
example, a transformed image will usually leave facial
features, such as the eyes and mouth, clearly visible and
the person easily recognisable.

Using monadic point-by-point operators, it is possible to
enhance the visual appearance of an image, so that its
brightness and/or contrast are improved. It is even possible
to enhance the visibility of dark, or bright, features
separately. To a limited extent, point-by-point operators are
able to compensate for variable levels of lighting.

Adding, subtracting & multiplying by a constant
In our first and simplest example of image processing, we
add the same number to each value in the intensity array. To
illustrate this, we will transform the following array, which
represents just a small part of a very much larger digital
image:

After adding 10 to each element, the result is

Add 10

As a result of performing this operation, the whole image
becomes brighter. Notice that black becomes dark grey.
Now, suppose that we had tried to add 20 to the entries in
our original array, instead. Some of the values will become
greater than 255, which is not allowed. To avoid such non-
sensical intensity values, we place limits on all elements in
the array. Any entry greater than 255 is replaced by 255.
The revised table entries that have been "hard limited" in
this way are printed in red in the array below.

 122 124 125 127 128
 131 133 134 135 158
 140 151 156 187 189
 201 210 215 225 228
 231 233 236 237 239

132 134 135 137 138
141 143 144 145 168
150 161 166 197 199
211 220 225 235 238
241 243 246 247 249

 142 144 145 147 148
 151 153 154 155 178
 160 171 176 207 209
 221 230 235 245 248
 251 253 255 255 255

Add 20

Subtracting a constant value from each entry makes the
whole picture darker. However, this can cause problems at
the lower end of the intensity scale, in which case, we
impose a lower hard limit of 0 (zero). In the following
example we subtract 150, so there is considerable loss of
information due to limiting.

Subtract 150

Hard limiting the minimum or maximum intensity values in
an image array destroys detail. Notice that adding a
constant and then subtracting the same value does not
necessarily restore the original unchanged. Hard limiting
occurs again, but this time at level 0 (zero).

Add 150 then subtract 150

 0 0 0 0 0
 0 0 0 0 8
 0 1 6 37 39
 51 60 65 75 78
 81 83 86 87 89

 150 150 150 150 150
 150 150 150 150 150
 150 151 156 187 189
 201 210 215 225 228
 231 233 236 237 23

The effects of image addition and subtraction are illustrated
in Figures 4.3 and .4.44.

Multiplying the intensity values in the array by a fixed
number is another obvious possibility. If the scaling factor is
less than 1.00, the image contrast is reduced, while it is
increased if the scaling factor is greater than 1.00.
Fractional values in the revised image array are rounded to
the nearest whole number. Multiplying intensities by a
number greater than 1.00 can produce values that exceed
255. For this reason, we must again impose a hard limit.
(Figure 4.5) Multiplying our little array by 1.5 we obtain

Multiply by 1.5

Hard limiting the values in the image array to a finite range,
[0,255], may cause some detail to be lost. There is another
effect that can lead to loss of information. Multiplying each
intensity value by 0.8 could seemingly be reversed by
multiplying the result by 1.25 (i.e. 1/0.8). However, the fact
that we are only allowing whole number entries in the image
array means that, in some cases, the final intensity values
will differ slightly from those in the original image. This
Quantisation Effect is not normally significant for Machine
Vision. Our little image array is not altered significantly

 183 186 187 190 192
 196 199 201 202 237
 210 226 234 255 255
 255 255 255 255 255
 255 255 255 255 255

Quantisation effects

Almost all readers will be familiar with image negation.
(Figure 4.6) In this process, black is replaced by white; dark
grey by light grey; light grey by dark grey; white by black. It
will be convenient to express this mathematically. Consider
a pixel whose intensity is X. For the sake of practical
convenience, we will assume that X lies in the range 0 to
255, which can be represented in 8 bits. This is usually
written in short-hand form as [0,255]. Then, the new
intensity value for that pixel is Y where

Y = (255-X).
Notice that whatever the value of X, Y also lies in the range
[0,255]. It is obvious that negating an image twice results in
an image that is exactly the same as the original. Negation
is therefore said to be reversible.

Many other monadic operations are reversible. Addition,
subtraction and multiplication are reversible but only if there
has been no hard limiting. Squaring the image intensities
can be reversed by applying the square-root operation.
(Figure 4.7) The order in which these operations are
performed can be reversed. There are a few very minor
differences between the restored and original images.

 123 124 125 128 128
 131 133 134 135 158
 140 151 156 188 189
 201 210 215 225 228
 231 233 236 238 239

These are due to quantisation effects. Figure 4.7 also shows
the results of applying reversible monadic operations, based
on anti-logarithm (exponential) and logarithm intensity
mapping functions. The fact that are reversible is clear from
the fact that Figure 4.7[TL] and [TR] are almost identical.

Any one of the six images in Figure 4.7 can be transformed
into any other, with only slight loss of detail due to
quantisation effects. So, no information is removed from, or
added, to an image by performing square, square-root,
logarithm or anti-logarithm operations, even though the
images in Figure 4.7 look very different. Within the limits
imposed by quantisation effects, a machine can produce
exactly the same result from processing any of these
images, irrespective of their visual appearance. This is
further evidence that machines and people do not see the
world in the same way. Another important lesson: we must
not rely solely on our eyes to judge the success of a vision
system.

Any sequence of monadic operations can be replaced by a
single monadic operation. Some examples are shown in
Figure 4.8, which also defines the operators just described
in mathematical notation

Contrast Enhancement
Figure 4.7[TL] is an unprocessed image derived directly
from a digital camera. Squaring the intensities (Figure
4.7[CL]) improves the image contrast. However, in Figure
4.9 the situation is different. Squaring the intensities
improves the contrast of the background (top-right corner)
but spoils our view of the "foreground" detail. Square-root
improves that (Figure 4.9[CL]), as does logarithm (Figure

4.9[BL]) and two composite operations. (Figure 4.9[CR] and
[BR]). Which on of these we consider to be "best" depends
on what we hope to achieve. What enhances the visibility of
one part of an image may not be appropriate for another. A
Machine Vision system is able to analyse the various parts
of an image in quite different ways and, afterwards combine
the results, if necessary. Humans and animals cannot do
this, since they process the whole image at the same time. A
machine can do this because it can store images. A brain
cannot! We will consider this again later but let us return
now to discuss contrast enhancement in more detail. What
we have described so far is naive and very limited.

A simple but very effective contrast enhancement procedure
can be expressed in terms of two functions that we have
already met: subtracting a constant and multiplying by a
constant. Here is the definition of our new operation:

Find the minimum intensity in the image. Call this Imin.
Subtract Imin from the intensity value of each pixel in the
given image.
Find the maximum intensity in the new image resulting
from Step 2. Call this Imax.
Rescale the intensity value of each pixel in the new
image by multiplying by 255/Imax.

Applying this to the tiny image array that we used earlier, we
get

Stretching intensity
Imin = 122
Rescaling: 2.18 [= 255/(239-122)]

(In this case, it is assumed that the minimum and maximum
intensities have been calculated over this 5x5 pixel array,

not over a larger image.) Notice that the minimum intensity
is now 0 (zero) and the maximum 255. This process is
called stretching the intensity scale. Figure 4.10
demonstrates this on two low-quality images, prepared
specially for this illustration. Such an impressive
improvement in image quality is not always achieved and
alternative techniques, such as those discussed later, might
do even better.

Mapping functions
Monadic functions can be expressed in another more
general way, without the explicit use of mathematical
notation. They can be defined instead, using a table of
stored numbers. Figure 4.2 explains how a monadic
operation can be performed using a Look-up Table (LUT).
We will discuss later how suitable entries in such a table
might be obtained. The LUT has the same number of entries
as there are possible intensity levels (256) and defines how
pixel intensities in the output image are derived from the
those in the input image. A LUT is a very convenient way to
implement a monadic function with an arbitrary Mapping
Function. This might be pre-calculated in several ways:
(1) Applying a mathematical formula on a once-and-for-all
basis
(2) Sketching a graph
(3) Performing some calculation on the image to fill the
entries in the LUT.

A LUT is well suited to implementation in either a computer
or specialised electronic image processing hardware. Let us
see how it works.

The equation defining the mapping function that performs
the square-root operation is given in Figure 4.8. (This
equation includes rescaling, which ensures that the result is
always in the range [0,255].) In this form, this computational
process requires that the square-root be evaluated afresh
for each pixel. This inevitably involves a great deal of
unnecessary repeated calculation, since most intensity
levels occur many times in an image of reasonable
resolution. The LUT provides an alternative and much faster
way to obtain the same result. We only need calculate the
mapping function values once, for each number in the range
[0,255], and save the results in the LUT. (Method 1) The
mapping function is then implemented by referring to the
table for each pixel. This allows the calculation to be
performed much faster and allows more general (i.e non-
mathematical) forms of monadic operator to be
implemented. (Method 2) We can put any numbers, in the
range [0,255] in the LUT. It can implement every monadic
functions defined so far and many more beside. Later, we
shall see how the contents of the look-up table can be
calculated to obtain a monadic function that almost always
achieves a significant improvement in image contrast.
(Method 3) That is quite an exciting prospect!

The mapping function can conveniently be visualised by
drawing the LUT contents as a graph (Figures 4.11 and
4.12). Graphs like these enable us to understand what the
mapping function stored in a LUT will do. For example, any
upward-turning curve, like that in Figure 4.11[CC], is
associated with a mapping function that suppresses detail in
the dark parts of an image and accentuates differences
between areas of light grey. On the other hand, a curve like
that in Figure 14.11[CR] does the reverse.

Thresholding
Thresholding is a very useful image processing function but
not in the obvious way that is usually anticipated by
newcomers to our subject. The basic concept of
thresholding is straightforward: each output pixel is set to

White, if its intensity is greater than or equal to some
predefined number, called the threshold parameter.
Black, if it is not.

Notice that the threshold parameter is held constant over
the whole picture and that the result is a binary image.

The effect of thresholding with different parameter values is
illustrated in Figure 4.13. Intuitively, thresholding seems to
be ideal for processing silhouettes of back-lit opaque
objects. This typically produces an image in which there is a
dark "blob", against a bright back-ground, while there are
very few pixels with mid-grey values. Figure 4.14 shows one
satisfactory result for a back-lit gear. The bar chart in Figure
14[B] is called the intensity histogram. This is a statistical
summary of the distribution of intensities in an image. Its
derivation and uses will be discussed in more detail later.
For the moment, let it suffice to say that, if the the histogram
has two well-defined peaks, the bottom/centre of the "valley"
indicates a good value for the threshold parameter.

However, dangers are lurking! Figure 4.15 demonstrates a
frequently encountered situation in which thresholding does
not work well. (I can supply a short video demonstrating
this) To the human eye, the outline of the bottle appears
clearly defined but did you notice how dark the four corners
of the image are? In this case, it is impossible to find a
values for the threshold parameter that will simultaneously

ensure that the bottle outline and background are intact. We
will see later that it is possible to obtain a good outline of the
bottle by other techniques, even though simple thresholding
is unable to do so. Thresholding is just part of that more
complicated procedure.

Intuitively, thresholding is an obvious way to reduce a grey-
scale image to binary form. Figure 4.16 provides further
evidence that it does not always work well. Several times, I
have argued about its efficacy with newcomers to Machine
Vision, who find it difficult to believe that such an "obvious"
technique will not reliably produce the good results they
expect. The principal reasons for this is that the human
visual system automatically compensates for slow variations
in brightness, both in time and across space. As dusk
approaches, the variation in ambient light is far from obvious
to the eye, until the sun is close to the horizon. However,
camera exposure settings must be adjusted over a wide
range during this time, indicating that the light level does
change significantly. Smooth spatial brightness variations
are also accommodated by the eye, as is evident in Figure
4.15. Any sharp intensity "steps" are noted immediately,
whereas smooth changes may not be. To a machine using
thresholding, gradual non-obvious background intensity
variations may be critical.

Despite these misgivings, thresholding is a very useful
image analysis tool. It is widely used in simple industrial
vision systems but care must always be exercised when
designing the lighting, to ensure that thresholding will be
both effective and reliable.

Pseudo-colour
Pseudo-colouring is a convenient way to improve feature
visibility and, as, a result, is in widespread use, including
areas such as thermal imaging, astronomy, scientific and
medical microscopy and airport baggage x-ray inspection.
Pseudo-colour exploits the eye's greater sensitivity to
variations of colour compared to changes of brightness.
When I first started studying image processing (mid-1970s),
I worked on a project studying thermal signatures of ships.
(Since then, I have avoided working on military applications
of Machine Vision.) My students and I viewed and
processed one particular monochrome thermal image,
derived from a maritime scene, many times for two years.
One day, we displayed it in pseudo-colour and immediately
we saw a ship lurking on the horizon that we had never
spotted before. Imagine what would have happened had
that been a hostile vessel! The lesson is that, during visual
examination of a scene, pseudo-colour is often able to alert
us to things that we might never spot otherwise.

Pseudo-colour will be useful to us throughout this book.
That is why it is introduced so early, alongside other image-
enhancement techniques. The process of pseudo-colouring
a monochrome image requires nothing more that three
monadic operators. (Figure 4.17)

Apply three separate monadic mapping functions to the
grey-scale image, to produce three new images that we
will call JR, JG and JB.
"Assemble" JR, JG, JB as the RGB components of a single
colour image.

Designing the mapping functions for a pseudo-colour
displays is probably best approached experimentally,

although an experienced vision engineer can anticipate
what will be "good" mapping functions.

Figure 4.18 shows one popular pseudo-color mapping
pattern: one component rises as the intensity increases;
another falls, while the third increases to a maximum (at
mid-grey) and then falls. Furthermore, we can combine
pseudo-colouring with one or more monadic functions, such
as negate, square, square-root, logarithm and anti-logarithm
(exponential) (Figure 4.19) There is no single "best choice";
we use whatever is helpful. Some machines, designed for
applications, such as x-ray baggage inspection and
detecting tumours in body-scan images, allow the user to
switch rapidly and easily between different pseudo-colour
mappings. Some even update the mapping functions
automatically, to produce a dynamic pseudo-colouring
effect.

One particular application that uses pseudo-colouring
deserves special note. Thermal imaging is frequently used
by fire-fighters and disaster-rescue teams. It is also used to
detect hot-spots in electrical, electronic and mechanical
systems. (Figure 4.20) Another important application area
for thermal imaging is in energy conservation, to detect
places where heat is being lost rapidly from buildings. In all
of these, it is customary to relate the intensity in the thermal
image to the temperature of surfaces in the scene being
viewed: hot spots are displayed as white or red, while cold
areas are shaded blue. (Of course, this is contrary to
physical reality, where hot bodies emit light with a high
content of blue light and cooler ones glow red.) Pseudo-
colouring is often designed to preserve this convention.
Sometimes, the pseudo-colour mapping is designed to

retain the intensity of the original monochrome image. In this
case, cool areas are mapped to dark blue, hot ones to bright
red and very hot parts to white. (Several example are show
in Chapter 7: Applications.)

We will encounter many more examples of pseudo-
colouring without further comment, as we progress through
this book. The important things to remember are that
pseudo-colouring is completely arbitrary and that its sole
justification lies in being able to assist and augment human
visual inspection.

Dyadic operators
Dyadic operators act on two pictures at once, to generate a
third. (Figure 4.21) The intensity for each pixel in the output
image is some arithmetic combination of the intensities of
those pixels at the corresponding positions in the two input
images. Let us define some notation, so that we can
understand these operators easily.

A The intensity of the pixel in position [i,j] of the first input
image (Blue)
B The intensity of the pixel in position [i,j] of the second
input image (Green)
C The intensity of the pixel in position [i,j] of the output
image (Red)

In what follows, the operation is performed for all pixels (i.e.
for all i and j) simultaneously.

Adding two images
C = (A+B)/2

(See Figure 4.22) This produces a result resembling a
photographic double exposure. It is not used on its own very
often. Multi-image addition is used sometimes to reduce the
noise from cameras.

Subtracting two images
C = (A-B+255)/2

This is far more useful for reasons that will be discussed in a
little while. It produces an identical result to negating one of
the input image and adding the result to the other input
image. (See Figure 4.22)

Multiplying two images
C = A.B/255

This also produces a result resembling a photographic
double exposure. It is not used very often.

Maximum of two images
C = MAXIMUM(A,B)

This operator, called the Dyadic Maximum, is able to
superimpose white pixels, perhaps forming text, a line
drawing (e.g. annotation arrows), or a graph, on dark parts
of an image. Elsewhere, the grey-scale image is
unchanged. (Figures 4.23 - 4.24)

Minimum of two images
C = MINIMUM(A,B)

This operator, called the Dyadic Minimum, is able to
superimpose black pixels, perhaps forming text, a line
drawing (e.g. annotation arrows), or a graph, on bright parts
of an image. (Figures 4.25 & 4.26) Elsewhere, the grey-scale
image is unchanged. It is often used to mask unwanted

parts of an image. Dyadic Minimum can be used to mask a
colour image by applying it to the RGB components
separately. (Figure 4.27)

Reducing Noise by Combining Many images
Video cameras inevitably generate a certain amount of
"noise", which is visible as a dynamic speckle-like pattern
superimposed on the ideal picture. Capturing two video
frames, even if they are acquired consecutively, are slightly
different, due to noise. As a result, even a smooth, uniform
surface that is viewed under constant lighting conditions,
has a slight speckle effect. Noise is a fundamental and
unavoidable feature of all devices that convert light into an
electrical signal. Thermal (infrared imagers and cameras
operating under low-light conditions tend to generate
particularly noisy pictures. For an image processing
machine, noise is a nuisance: edges become jagged and
plain areas appear mottled. We will describe some effective
procedures for reducing the effects of noise in an image
later but here we will demonstrate how the noise level noise
can be by combining several images.

Noise is usually additive. That is, a "noise image",
resembling a snap-shot of television "snow", is unavoidably
added by to the signal that represents the scene of interest.
The physics of photo-electrical energy conversion shows
noise is unavoidable; it is not done deliberately. All the
camera designer can do is reduce noise to the lowest
possible level. An effective way to reduce the effects of
additive noise is to add together several digital images
captured from the camera's video stream. (Figure 4.28) For
this to be effective, the scene being viewed must not change
during the averaging process. Objects in front of the camera

must not move, or change colour and the illumination must
not be altered

Local Operators

Local operators are simple image filters that combine the
intensities of several pixels in order to calculate each new
intensity value in the output image. They operate on a single
input image. They can perform some very useful functions
and are easy to implement.

Consider a group of 9 pixels centred on the [i,j] pixel. (That
is, the pixel in column i and row j.) The intensity for pixel [i,j]
in the output image is found by combining the intensities of
the corresponding pixel and its 8 immediate neighbours in
the input image. For convenience, we will use the following
notation to represent these intensities:

Notice that I (upper case) is an intensity value and i (lower
case) is a column number. E is the intensity of the [i,j] pixel.
A is the intensity of the [i-1,j-1] pixel, displaced one row up

Column i-1 Column i Column i+1
Row j-1 A B C
Row j D E F
Row j+1 G H I

and one column left from [i,j]. B is the intensity of the [i,j-1]
pixel immediately above [i,j] and so on.

We are now able to illustrate specific examples of local
operators. Remember that the operations that we are about
to describe are performed simultaneously for every pixel in
the output image. The edges of the image require special
consideration. For the moment, we will ignore this topic but
will return to it later.

Local Averaging
See Figure 4.29. Local averaging is the process of adding
the intensities of a small group of close pixels and produces
a slight blurring effect. For example. the intensity at pixel
[i,j,] in the output image might be calculated as follows:

(A+B+C+D+E+F+G+H+I)
This generates in image in which the intensity values do not
necessarily lie inside the range [0,255]. To ensure that they
do, the formula should be modified to

(A+B+C+D+E+F+G+H+I)/9

This is an example of normalisation, which we have already
encountered, when discussing monadic and dyadic
operations. It will be ignored for the moment because it will
distract us from other important issues.

To emphasise the fact that the [i,j] pixel is being replaced,
we can write this as an assignment:

E' ⬅ (A+B+C+D+E+F+G+H+I)/9
It must be understood that E to the right of the arrow refers
to an intensity value in the input image and that E' to its left

is in the output image. (All pixel values in the output image
are effectively calculated at the same time.)

Blurring
The blurring effect produced by local averaging can be
increased in one of two ways:

Repeating the process several times.
Using a larger processing neighbourhood, for example
5x5, 7x7, 9x9 and 15x15 pixels.

Blurring generated in this way is very much like that
produced by mis-focussing a camera, or projector, or by
squinting. Looking through smoke or thin fog, cloudy water
and a translucent film produces a similar blurring effect, as
do cataracts. These all lead to image degradation, so why
are we interested in doing the same thing inside a
computer? There are two reasons:

(a) By subtracting the blurred image from the original, we
can eliminate variations in background intensity, thereby
making thresholding very much more reliable. We will
encounter this combination of blurring, subtraction and
thresholding many times in the following pages
(b) Consider an image that it totally black, except for a
single white point. By applying a blurring operator, the point
is spread out to form a fuzzy blob. (Figure 4.29[BL] and [BR]
Notice that repeated application of a blurring filter, makes
the image even more blurred. More about this later.) The
diameter and shape of this fuzzy blob can be measured,
alloying us to quantify and thereby control the blurring
process. We refer this fuzzy blob as the Point-spread
Function of the blurring operation. (Figure 4.29[BL] and
[BR])

Edge Effects
All local operators produce anomalies around the edge of an
image. Edge Effects become larger as the processing
neighbourhood (the kernel) is increased in size. (Figure
4.30) A local operator based on a kernel of size
(2m+1)x(2n+1) produces edge effects m pixels wide on the
left and right of the filtered image and n pixels wide at its top
and bottom.

The only safe way to accommodate edge effects is to ignore
the edges of the image. (Blue area in Figure 4.30.)

Low-pass & High-pass Filtering
Blurring is an inherent property of low-pass filtering: narrow
stripes merge, whereas wider ones do not. Small, well-
separated spots tend to "melt" into the background; dark
spots become brighter and versa versa. If the spots are
close together they blend into one larger fuzzy cluster. Large
areas with no sharp intensity steps are almost unchanged,
except that their edges become blurred.

Subtracting a blurred image from the original implements a
high-pass filter. (Figures 4.31-4.33) This retains only small,
spots and accentuates sharp dark-bright intensity
transitions.

A 3x3 high-pass filter can be implemented by the following
formula which calculates a new value (E') for a single point
in the output image).

E' ⬅ 8.E - (A+B+C+D+F+G+H+I) (no normalisation)
or with normalisation

E' ⬅ (2040 + 8.E - (A+B+C+D+F+G+H+I))/4080
A range of high-pass filters can be implemented, by
subtracting the original image and the result of blurring
using a large-kernel local-averaging filter.

Directional filtering
It is easy to modify the formula to blur in one direction only.
For example, a 1-dimensional blur, in the horizontal
direction, can be achieved by setting the intensity to

E' ⬅ (D+E+F).
To blur in the vertical direction, use

E' ⬅ (B+E+F).
These have kernel sizes of 3x1 and 1x3 respectively.

Using the same terminology, consider the following filter
E' ⬅ (A+B+C) - (G+H+I).

If used on its own, the first part of the formula defining the
filter [i.e. (A+B+C)], blurs horizontally and shifts the image
down by one row. On its own, the second part, (G+H+I),
blurs horizontally and shifts the image up by one row. The
minus sign between these two parts indicates that we
subtract these two partial results. The overall effect is to
highlight horizontal edges; the filter is sensitive to steep
intensity gradients along the vertical axis. (Figure 4.34)

Another, similar filter, based on the formula
E' ⬅(A+D+G) - (C+F+I)

detects vertical edges.

Adding the monadic Fold operator (Figure 4.11[BR]), it is
possible to produce an edge detector that is sensitive to
both increasing and decreasing intensity changes. Here is
the calculation for detecting sharp horizontal intensity
gradients:

E' ⬅ | (A+D+G) - (C+F+I) |
[Note: |..| is the modulus function. I is a number.]

Of course,
E' ⬅ | (A+B+C) - (G+H+I) |

detects sharp vertical intensity gradients

These two steps can be combined, using dyadic addition to
create an edge detector that highlights all sharp intensity
gradients, in any direction. Here is the formula

E' ⬅ |(A+D+G) - (C+F+I) | + [|(A+B+C) - (G+H+I) |
(No attempt is made here to normalise the intensity scale.)

This is just one of the numerous of edge detectors that have
been devised but it is not the best! Here the definition of
another, the popular Sobel Edge Detector:
E' ⬅ [|(A+2D+G)-(C+2F+I) | + [|(A+2B+C)-(G+2H+I) |]/6
(Division by 6 normalises the output intensity to lie in the
range [0,255].)

Weighted Local Operators
The component

(A+2D+G)
of the Sobel Edge Detector blurs the image but not as much
as

(A+D+G)

does. Sometimes, it is desirable to give greater emphasis to
pixels near the centre of the processing neighbourhood.
This is possible if we multiply each pixel within it by a
different amount. For example we might use the formula

E' ⬅ (A+2B+C+2D+3E+2F+G+2H+I)
to produce a mild blurring effect. Let us extend this idea to
the a more general case. To do so, it is convenient to hold a
set of multipliers (called Weights) in an array (called the
Weight Array) thus:

The weights are combined with the intensity values within
the 3x3 pixel processing neighbourhood as follows:
E' = A.Wa + B.Wb + C.Wc +
 D.Wd + E.We + F.Wf +
 G.Wg + H.Wh + I.Wi

So, the weight array for the previous example is as follows:

Weight values are shown in blue. To appreciate the local
operators better, let us consider some more examples. In
each case, the input image consists of only 0s and 1s.
(These are numbers, not logical values.) To make things as

Wa Wb Wc

Wd We Wf

Wg Wh Wi

1 2 1
2 3 2

1 2 1

simple as possible, normalisation will be ignored, except
where stated explicitly.

Upright Cross

A filter using the weight array
produces a maximum output value (5) when the image is

Notice the use of both positive and negative weights.

Isolated White Point
A filter using the weight array

produces a maximum output value (9) when the image i

-1 +1 -1
+1 +1 +1

-1 +1 -1

0 1 0
1 1 1

0 1 0

-1 -1 -1
-1 +9 -1

-1 -1 -1

0 0 0
1 +1 0

0 0 0

Counting White 8-Neighbours
We simply use the following weight array to count pixels
with intensity 1 and lying inside each3 X3 window.

We are using the local-averaging operator on a grey-scale
image. That is, intensities [0,1] represent arithmetic values.
Now, for a moment, think of [0,1] as logical entities. Blurring
of the distinction between grey-scale and binary operations
is very useful and we will return to this in the following
chapter.

Detecting Specified Binary Patterns
A filter using the weight array

produces a unique value for every possible pattern of 0s
and 1s in the 3x3 neighbourhood. The output is in the range
[0,511]. By thresholding it is possible to detect any specified
pattern of 0s and 1s in a 3x3 neighbourhood. Very useful!
Here is an example: the image

+1 +1 +1
+1 +1 +1

+1 +1 +1

 1 2 4
8 16 32

64 128 256

 1 0 1
0 1 0

0 1 0

produces a value of 149 (= 1+4+16+128), so we can use
this to detect the simple pattern ‘Y’.

Horizontal Smoothing & Vertical Differencing
Here is a simple 3x3 weight array that performs horizontal
smoothing & vertical differencing.

The idea can be extended to larger processing windows
and weight arrays. For example, here is a 9x5 weight array
that provides greater smoothing along rows and detects
slower intensity changes along columns.

This filter produces exactly the same results as this 9x1 filter

followed by this 1x5 filter

1 1 1
0 0 1

-1 -1 -1

 1 1 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

Applying them in the reverse order also produces identical
results.

Repeating Low-pass Filtering
Applying a 3x3 local-averaging filter to an image with a
single white pixel (intensity 1), while all other pixels are
black (0) produces the following result.

Applying the same filter to this result yields the following
image

Now, applying the same filter for a third time produces the
image

 1 1 1
 1 1 1
 1 1 1

 1 2 3 2 1
 2 4 6 4 2
 3 6 9 6 3
 2 4 6 4 2
 1 2 3 2 1

+1

0

0

0

-1

Figure 4.29 shows that repeating a low-pass filter produces
even greater blurring. The process can be repeated as
many times as we wish but note that the image border
covered by edge effects becomes progressively wider.

The array just given (red) is an image array but suppose we
use the same numbers to define a 7x7 weight array. This
filter produces an identical result to that obtained by
applying the 3x3 local-averaging filter three times.

Another possibility: exactly the same result can be obtained
in a sequence of six steps

• 1x3 local-averaging filter, applied times, followed by
• 3x1 local-averaging filter, applied three times.

There are even more ways to achieve identical results, so
we are free to choose one that makes the computation
cheapest/fastest.

Non-linear Local Operators
So far, we have discussed so-called Linear Local Operators
in which intensity values are added or subtracted. Now, we

 1 3 6 7 6 3 1
 3 9 18 21 18 9 3
 6 18 36 42 36 18 6
 7 21 42 49 42 21 7
 6 18 36 42 36 18 6
 3 9 18 21 18 9 3
 1 3 6 7 6 3 1

turn our attention to local non-linear operators that combine
intensities using the Maximum (MAX) and Minimum (MIN)
operations. Here are two examples, based on a 3x3
processing window

Largest Neighbour (LNB)
E' ⬅ MAX(A,B,C,D,E,F,G,H,I)

Smallest Neighbour (SNB)
E' ⬅ MIN(A,B,C,D,E,F,G,H,I)

Larger processing windows are, of course, possible but
these can be replicated by applying LNB/SNB several times.

The effect of LNB is to make bright regions slightly bigger
and dark regions correspondingly smaller. Of course, SNB
does the reverse. For this reason, LNB is often called
Dilation and SNB Erosion. However, the latter are general
terms and are often used when referring to filters with non-
square kernels.

Two particularly effective edge detectors can be
implemented by subtracting the result of LNB/SNB from the
original image. (Figure 4.35)

Applying LNB then SNB does not reconstruct the original
image. In fact, it tends to eliminate small dark spots and
narrow dark streaks. If the result is subtracted from the
original image, these features are clearly visible, while the
background is "flattened". The result is a very useful filter,
called a Crack Detector. (Figure 4.36 and 4.37). Sometimes,
this process is termed Closing. If we use the operator
sequence [SNB, LNB] instead, the filter is said to perform
Opening.)

Cracks and scratches are common manufacturing faults and
the Crack Detector has proved to be very useful in many
practical applications, such as detecting thin fragments of
bone in X-rays of fish and meat, thin wires, scratches, and
of course, cracks. Since it highlights thing dark streaks, we
must apply negation first, if we want to find bright lines.

Adding the images resulting from LNB and SNB applied
successively is an efficient way to reduce "noise" in an
image.

Another way to do this is to use the Median Filter, defined
thus for a 3x3 kernel:

E' ⬅ FIFTH_LARGEST(A,B,C,D,E,F,G,H,I)
(Figure 4.38.)

There are many more interesting possibilities. For example,
an edge detector that is relatively insensitive to noise can be
created by computing the following quantities:

E3 ⬅ SEVENTH_LARGEST(A,B,C,D,E,F,G,H,I)
E7 ⬅ THIRD_LARGEST(A,B,C,D,E,F,G,H,I)
E' ⬅ |E3 - E7 |

Notice that we are beginning to define image processing
operators as sequences of simpler "building blocks". It is
often very much easier to understand and design algorithms
in this way, rather than trying to express the calculation in
one large mathematical equation.

Intensity Histograms
We encountered histograms informally earlier, in Figures
4.14 & 4.28. Now, we need to explain how they can help us
to analyse an image in quantitative terms.

A Histogram, properly called an Intensity Histogram, is a
table of numbers indicating how many pixels have each
possible intensity value. (Figure 4.39)

Figure 4.40 shows three sample histograms. Notice that
Figure 4.40[TR] has two distinct well-separated peaks. (It is
therefore said to be Bi-modal.) Back-lighting opaque objects
often generates histograms like this. Figures 4.14, 4.41[T],
4.42[T] & 4.43 show further examples of bi-modal
histograms. The valley between these peaks corresponds to
the few pixels that are on the edge of the object silhouette.
Placing an intensity threshold at the bottom/centre of such a
valley is often an effective way to separate the object from
its background. (Figure 4.42) However, back-illuminating a
transparent object, such as a glass bottle, may produce a
histogram in which there is no obvious valley. (Figure
4.40[CR]).

Before we move on, refer back to Figure 4.41[BR]. This
strange form of histogram is sometimes found when an
image has been JPEG coded.

Figure 4.44 shows the histogram derived from the
monochrome image of a quiche and the histograms of its
parts. Notice that the peaks they generate overlap, showing
that they are not perfectly separable by thresholding. Figure
4.44 also shows the results of thresholding at the intensity
levels corresponding to the valleys in the histogram.

The histogram can be used as an analytical tool, for
example, to study information loss caused by image coding.
In Figure 4.45, the histograms of an image and its JPEG-
coded version are quite different, even though the images
themselves are visually very similar. When these images are
subtracted, we obtain what seems to be a meaningless
noisy mess. (Figure 4.45[BL]) However, the histogram of
this difference image is revealing: it consists of a single
narrow spike (Figure 4.45[BR]) whose width is a measure of
the accuracy of the JPEG coding: a narrow spike indicates
that little information has been lost.

Cumulative Histogram
The Cumulative Histogram is derived from the intensity
histogram by a simple recursive calculation, involving only
addition. Let h(i) be the intensity histogram value for
intensity level i and H(i) the Cumulative Histogram value.
Then, we calculate H(i) as follows

H(i) = H(i-1) + h(i)
where

H(0) = h(0).
This is illustrated in Figure 4.46. Also see Figure 4.47.

The cumulative histogram is often more useful than the
intensity histogram when we want to measure a grey-scale
image. For example, we can use the cumulative histogram
to calculate the intensity threshold that segments the image
in given proportions. For example, the 5% and 95% centiles
(called C(5) and C(95)) might be used to stretch the
intensity scale, to improve contrast. The calculation is as
follows:

X' = 255*(X - C(5))/(C(95) - C(5))

(This inevitably requires hard limiting, to ensure that the
result lies within the range [0,255].) X' is the pixel intensity
after rescaling and X is the intensity before. Of course, other
pairs of centile values might be used instead. (e.g. 2% and
97%) (Figure 4.48) Rescaling intensity like this ignores both
extremely bright and extremely dark pixels and makes the
process less sensitive to noise than the simpler alternative:

X' = 255*(X - Imin)/(Imax - Imin)
where Imax and Imin are the maximum and minimum
intensity values, calculated over the whole image.

Histogram Equalisation
However, the greatest benefit provided by the cumulative
histogram is that it forms the basis for a very effective
contrast enhancement procedure, called Histogram
Equalisation. (Figure 4.48)

Let us assume that the image has a total of N pixels and
that, as usual, we want to normalise the calculated intensity
values to stay within the range [0,255]. As before, let us
represent the cumulative histogram by [H(0), H(1), H(2),
H(3), ..., ,H(255)]. First, we rescale the cumulative histogram
thus

R(i) = 255*H(i)/N, for i = 0, 1, 2, 3, ..., 255.
Then, we use the rescaled values, [R(0), R(1), R(2),
R(3), ..., ,R(255)], to fill the look-up table for a monadic
operator (Figure 4.2) and apply this to the original image.
The histogram of this modified image is (nearly) flat,
whatever the initial shape of the histogram.

 Let us summarise this process:

• Calculate the intensity histogram of the original
image.

[h(0), h(1), h(2), h(3), ..., ,h(255)].
• Compute the cumulative histogram

[H(0), H(1), H(2), H(3), ..., ,H(255)].
• Rescale the cumulative histogram and load these

values into the look-up table for a monadic operator.
[R(0), R(1), R(2), R(3), ..., ,R(255)]

• Apply that monadic operator to the original image.

Histogram Equalisation can be applied to just part of an
image. For example, black pixels might be ignored when
calculating the mapping function.

Histogram Equalisation is just one of a range of powerful
Histogram Modification procedures. In Figure 4.49,
histogram equalisation has been applied in association with
pseudo-colouring, to enhance the differences existing in a
low-contrast image. It can also be used in combination with
other monadic operators, such as negate, square, square-
root, logarithm, exponential, etc. Choosing the "best"
combination, for a given application is most effectively
achieved interactively, by experimentation.

Histogram Equalisation allows us to threshold an image so
that any given percentage of the resulting binary image is
white. This is particularly useful for pre-processing textured
images. In Figure 4.50 three threshold values (giving 25%,
50% and 75% white) are used. None of them is totally
satisfactory, due to the uneven lighting. Although, fixed-level
thresholding fails, Histogram Equalisation does not, as it

clearly demonstrates that the original image is not good
enough.

Local Area Histogram Equalisation
Histogram equalisation can be useful for preprocessing, as
a step towards analysing image texture. However, applying
the procedure to the complete image can be disappointing
as Figure 47(B] and Figure 50 show. What appear to be
minor changes in the intensity of the background are, in fact,
critical.

One seemingly attractive way to avoid problems caused in
this way is to apply Histogram Equalisation to small parts of
an image. Small adjoining non-overlapping patches,
covering the whole of the input image, would be processed
separately and then "reassembled" to form a complete
image. Unfortunately, this does not work very well, because
the edges of adjacent patches show marked intensity
differences. We will not pursue this approach.

A superior solution is to perform the histogram-equalisation
calculation for a block of pixels covering a small compact
region of the image but keep the result for only the central
pixel. The processing window is scanned across the entire
input image and the process repeated for each pixel. This is,
of course, exactly what a non-linear local operator does.
The name of this operation is fairly obvious: Local Area
Histogram Equalisation. The same result can be obtained in
a simpler way: within each processing window, count the
number of pixels that are brighter/darker than the central
pixel. (Of course, some rescaling may be needed.) Figure
4.51 shows Local Area Histogram Equalisation applied to a
sample of plain carpet. Compare this result with Figure 4.50.

Row Integration & Row Maximum
These are two operations that seemingly do not have any
real value. However, they are both invaluable components
of more complex procedures. Figure 4.52 explains them
both. Figure 4.53 illustrates the use of row maximum and
Figure 4.54 how row/column integration can be used to
detect linear features that are aligned parallel to one of the
image axes. Figure 4.55 demonstrates how sensitive row
and column integration are to the orientation of those
features.

Image Rotation
Image rotation is not as straightforward as we might think.
(Figure 4,56) Sharp edges are always degraded to some
extent by rotating a digital image. The reason is explained in
Figure 4.57[T]. There are two simple approaches to
estimating values for those output pixels that do not coincide
exactly with input pixels:

• Choose the nearest neighbour. (D in Figure 4.57[B])
• Use interpolation to estimate an appropriate value.

Linear interpolation of the values of the four nearest
pixels (A, B, C and D in Figure 4.57[B]) is the
simplest and most obvious.

Image Warping
Rotation and warping share the same fundamental difficulty
that is summarised in Figure 4.57. Why should we be
interested in warping images? There are several reasons:

• A vantage point close to the subject introduces
geometric distortion.

• Lenses can introduce significant geometric distortion.

• Images may be derived from non-standard cameras.
• The surface being viewed may be curved.

Industrial vision systems are sometimes required to inspect
an object, rotating continuously using a line-scan camera.
(Figure 4.58. Also see Chapter 2) In this situation, it is often
advantageous to convert polar coordinates (circular) to
Cartesian coordinates (rectangular). (Figure 4.59) The
reverse axis transformation allows us to reconstruct an
image that can be compared to the normal view. (Figure
4.59[TL]). While we can process images in either format,
filtering results will not be the same because pixels in the
polar-axis version are not evenly spaced. (Figure 4.58[BR])

Figure 4.60 demonstrates a situation where it would be
easier for a program to interpret the polar-coordinate image
than the Cartesian-coordinate version that a standard
camera generates.

Imagine trying to inspect the mouth of a bottle, using a
standard array camera (not line-scan) looking vertically
downwards, onto its top. Most of the interesting detail is
conveyed by pixels near the edges of the image; there are
many "wasted" pixels within the mouth of the bottle. These
occupy computer memory and reduce the speed of
inspection (measured in bottles/minute) Figure 4.61 shows
how the "hole in the middle " can be removed.

Figure 62 and Figure 63 demonstrate several more
examples of image warping. Geometric distortion can often
be corrected satisfactorily by software, provided the
d is tor t ion mapping func t ion can be expressed

mathematically, or derived empirically from experimental
observation. Like rotation, image warping requires
interpolation and it therefore inevitably associated with loss
of resolution, in some locations worse than others
 The following situations: can benefit.

• Close-up viewing (Figure 4.63[TC])
• Viewing a spherical, cylindrical surface
• General curved surface such as a page in a thick

book (Figure 4.63[BC])
• Pin-cushion and barrel distortion (Figure 4.63[TR])
• Lens distortions (e.g. cylindrical, fish-eye and

anamorphic lenses)
• Reflections on surfaces, such as cylinders, cones

(Figure 63[BR])
• Images derived from flying-spot scanners.
• Variable central ("foveal") & peripheral resolution.

Detecting Straight Lines

The Radon Transform (RT) is used to detect linear features
in images. When combined with an edge-detection operator,
it can detect continuous lines, straight edges and linear
arrangements of disconnected spots. It is an analytical tool
and, as such, does not show visually recognisable features
seen in the original image.

The Radon Transform, combines image rotation and row-
integration, so let us look at these first. Refer to Figure 4.55
again. It illustrates the directional sensitivity of the row/
column-integration operator. Figure 4.64 demonstrates the

ability of row-integration to detect when printed text is
aligned to the horizontal image axis. Figure 4.65 illustrates
the same point, with reference to multiple micro-electronic
devices on a ceramic plate

The procedure for generating the RT, is defined thus:
1. Repeat steps 2-4 for suitable values of N. (e.g. N =

0:179)
2. Rotate the input image by angle N.k, where k is a

constant. (e.g. k = 1˚)
3. Row-integrate the result of step 1.
4. Copy the right-most column of the image generated in

step 3 and place it into column N of the RT output
image.

Notice that we can adjust the range of angles and the
constant k (angular increment for image rotation) So, for
example, we might generate a coarse, wide-angle RT (e.g.
N = 0:19, k = 5˚) or a narrow, high-resolution version (e.g N
= 25:125, k = 0.1˚)

Figure 4.66 shows how the RT is used in practice. Notice
the bright spots in Figure 4.66[CL], each of which indicates
the presence of a strong linear feature in [TR]. It is possible
to relate the position of bright spots in the RT to linear
features in the original image. This results in the Inverse
Radon Transform. Figure 4.66[BL] and Figure 4.67  

	Point-by-point Operators
	Local Operators

