
Chapter 4

256 Shades of Grey



Preamble 
When studying vision in nature, we are trying to discover 
what data processing is taking place inside a “closed box”. 
There is very little opportunity for direct access into either 
human or animal brains. Implanted electrodes and PET 
scanning have provided some insight into what happens 
inside the brain but our knowledge is still very limited. On 
the other hand, to develop Machine Vision systems, we 
need to decide what processing capabilities to insert into 
“the box”. These two pursuits are quite different: studying 
natural vision requires analysis, while designing Machine 
Vision devices requires synthesis. 


How do we know what to put inside “the box”? Some 
operations that we use to process digital images were first 
tried for no other reason than that they are fast and simple 
to perform in a computer. For example, adding (or 
subtracting) a fixed number to every intensity value is one 
obvious operation that was investigated very early. What 
visual effect does such an operation have? Is it useful in 
practice? On its own, it is not so, but when it is used in 
combination with other functions it is very valuable. We 
cannot fully appreciate its benefits until we start to build 
sequences of simple processing steps.


A natural first step in our journey through image processing 
for Machine Vision is to describe how one image can be 
created from another. Often, the goal is to enhance the 
visibility of important features, while suppressing others. An 
obvious example is negation, which is, of course, familiar to 
film photographers. Blurring, enhancing edges, pseudo-
every colouring and thresholding are among the other well-
known operations that we will encounter. In each of these 



cases, an image is transformed into another image, with no 
distortion of geometry; major image features are still 
recognisable, sometimes made more clearly visible, 
sometimes less so.


Why begin with grey-scale images when colour is so much 
more interesting and appealing? The simple answer is that 
we need to take small steps first: colour image processing 
is builton the ideas described in this chapter. While binary 
images appear to be simpler than grey-scale pictures, the 
operations and measurements that we need to perform are 
conceptually very different. In practice, processing grey-
scale, or colour, images almost always precedes 
transforming to and analysing binary images. The important 
features must be enhanced, identified and isolated before 
they can be measured.


Families of image processing operations 
We can identify several families of processing operations 
that we can apply to grey-scale images:


1.Monadic Operators A single image (the input image) is 
processed to generate another image (the output image). 
Each input pixel is processed independently of all others, 
at the same moment. The output image is therefore the 
same size and shape, as the input. There is no change of 
size, orientation, or geometric distortion. At least some of 
the major image features are still identifiable. (The very 
point of the processing may be to suppress the visibility 
of other features.) For this reason, these said to be point-
by-point operators.




2.Dyadic Operators. Two input images are combined to 
generate a third output image. Each corresponding pair of 
pixels is processed independently of all others, at the 
same moment. Again, there is no geometric distortion. 
These are also point-by-point operators 


3.Local operators: Again, a single image is processed to 
generate another image but the value of every output 
pixel is derived from a (compact) group of pixels in the 
input image. This process is repeated for all output pixels, 
at the same moment. The output image is the same size 
and shape, as the input. 


4.Image measurements The output is one or more 
numbers. 


5.Intensity histogram (Or Histogram) This is a list of 
numbers describing the statistics of the intensity values in 
the image array. It can yield some very valuable 
measurements, which can guide further processing. The 
histogram is often displayed as a graph.


Point-by-point Operators  

Monadic, dyadic and local operators are normally used as 
part of a complex processing sequence; they are rarely 
used on their own. It is therefore difficult, at this early stage, 
to justify them fully. Hence, for the moment, we will simply 
demonstrate the effects they produce. Sometimes, they do 
improve the visual appearance of an image, but they can 
also do the opposite. Even so, they are often be very 
effective tools and, for this reason, are essential 
components within nearly all artificial vision systems.




Monadic Operators 
The operation of a monadic operator is explained in Figure 
4.1. A typical pixel, such as that in the ith column and jth row, 
is transformed to produce a new value that is then stored in 
the same position, [i,j], in the output image.The 
transformation by the so-called Mapping Function, may be 
achieved by calculation. For example, we may simply add, 
or multiply, the intensity of each pixel [i,j] by a constant (a 
fixed number). Alternatively, the mapping function may be 
implemented using a Look-up Table (LUT, Figure 4.2). 
Entries in the table need only be calculated once, which can 
save a lot of computation time. It also allows a general class 
of dynamic image-to-image transformations, based on prior 
measurements, to be performed. Monadic operations 
usually leave the image features clearly identifiable. For 
example, a transformed image will usually leave facial 
features, such as the eyes and mouth, clearly visible and 
the person easily recognisable. 


Using monadic point-by-point operators, it is possible to 
enhance the visual appearance of an image, so that its 
brightness and/or contrast are improved. It is even possible 
to enhance the visibility of dark, or bright, features 
separately. To a limited extent, point-by-point operators are 
able to compensate for variable levels of lighting. 


Adding, subtracting & multiplying by a constant

In our first and simplest example of image processing, we 
add the same number to each value in the intensity array. To 
illustrate this, we will transform the following array, which 
represents just a small part of a very much larger digital 
image:
 




After adding 10 to each element, the result is


Add 10

As a result of performing this operation, the whole image 
becomes brighter. Notice that black becomes dark grey. 
Now, suppose that we had tried to add 20 to the entries in 
our original array, instead. Some of the values will become 
greater than 255, which is not allowed. To avoid such non-
sensical intensity values, we place limits on all elements in 
the array. Any entry greater than 255 is replaced by 255. 
The revised table entries that have been "hard limited" in 
this way are printed in red in the array below.

   122   124   125   127   128

   131   133   134   135   158

   140   151   156   187   189

   201   210   215   225   228

   231   233   236   237   239 

132   134   135   137   138 

141   143   144   145   168 

150   161   166   197   199 

211   220   225   235   238 

241   243   246   247   249   

  142    144   145   147   148

   151   153   154   155   178

   160   171   176   207   209

   221   230   235   245   248

   251   253   255   255   255   



Add 20


Subtracting a constant value from each entry makes the 
whole picture darker. However, this can cause problems at 
the lower end of the intensity scale, in which case, we 
impose a lower hard limit of 0 (zero). In the following 
example we subtract 150, so there is considerable loss of 
information due to limiting. 


Subtract 150

Hard limiting the minimum or maximum intensity values in 
an image array destroys detail. Notice that adding a 
constant and then subtracting the same value does not 
necessarily restore the original unchanged. Hard limiting 
occurs again, but this time at level 0 (zero).


Add 150 then subtract 150

      0      0      0      0      0     

      0      0      0      0      8

      0      1      6    37    39

    51    60    65    75    78

    81    83    86    87    89

  150   150   150   150   150

   150   150   150   150   150

   150   151   156   187   189

   201   210   215   225   228

   231   233   236   237   23



The effects of image addition and subtraction  are illustrated 
in Figures  4.3 and .4.44. 

 

Multiplying the intensity values in the array by a fixed 
number is another obvious possibility. If the scaling factor is 
less than 1.00, the image contrast is reduced, while it is 
increased if the scaling factor is greater than 1.00. 
Fractional values  in the revised image array are rounded to 
the nearest whole number. Multiplying intensities by a 
number greater than 1.00 can produce values that exceed 
255. For this reason, we must again impose a hard limit. 
(Figure 4.5) Multiplying our little array by 1.5  we obtain


Multiply by 1.5

Hard limiting the values in the image array to a finite range, 
[0,255], may cause some detail to be lost. There is another 
effect that can lead to loss of information. Multiplying each 
intensity value by 0.8 could seemingly be reversed by 
multiplying the result by 1.25 (i.e. 1/0.8). However, the fact 
that we are only allowing whole number entries in the image 
array means that, in some cases, the final intensity values 
will differ slightly from those in the original image. This 
Quantisation Effect is not normally significant for Machine 
Vision. Our little image array is not altered significantly


  183  186  187  190  192

  196  199  201  202  237

  210  226  234  255  255
  255  255  255  255  255

  255  255  255  255  255



Quantisation effects

Almost all readers will be familiar with image negation. 
(Figure 4.6) In this process, black is replaced by white; dark 
grey by light grey; light grey by dark grey; white by black. It 
will be convenient to express this mathematically. Consider 
a pixel whose intensity is X. For the sake of practical 
convenience, we will assume that X lies in the range 0 to 
255, which can be represented in 8 bits. This is usually 
written in short-hand form as [0,255]. Then, the new 
intensity value for that pixel is Y where 


Y = (255-X).

Notice that whatever the value of X, Y also lies in the range 
[0,255]. It is obvious that negating an image twice results in 
an image that is exactly the same as the original. Negation 
is therefore said to be reversible. 


Many other monadic operations are reversible. Addition, 
subtraction and multiplication are reversible but only if there 
has been no hard limiting. Squaring the image intensities 
can be reversed by applying the square-root operation. 
(Figure 4.7) The order in which these operations are 
performed can be reversed. There are a few very minor 
differences between the restored and original images. 

   123   124   125   128   128

   131   133   134   135   158

   140   151   156   188   189

   201   210   215   225   228

   231   233   236   238   239



These are due to quantisation effects. Figure 4.7 also shows 
the results of applying reversible monadic operations, based 
on anti-logarithm (exponential) and logarithm intensity 
mapping functions. The fact that are reversible is clear from 
the fact that Figure 4.7[TL] and [TR] are almost identical.


Any one of the six images in Figure 4.7 can be transformed 
into any other, with only slight loss of detail due to 
quantisation effects. So, no information is removed from, or 
added, to an image by performing square, square-root, 
logarithm or anti-logarithm operations, even though the 
images in Figure 4.7 look very different. Within the limits 
imposed by quantisation effects, a machine can produce 
exactly the same result from processing any of these 
images, irrespective of their visual appearance. This is 
further evidence that machines and people do not see the 
world in the same way. Another important lesson: we must 
not rely solely on our eyes to judge the success of a vision 
system.


Any sequence of monadic operations can be replaced by a 
single monadic operation. Some examples are shown in 
Figure 4.8, which also defines the operators just described 
in mathematical notation


Contrast Enhancement 
Figure 4.7[TL] is an unprocessed image derived directly 
from a digital camera. Squaring the intensities (Figure 
4.7[CL]) improves the image contrast. However, in Figure 
4.9 the situation is different. Squaring the intensities 
improves the contrast of the background (top-right corner) 
but spoils our view of the "foreground" detail. Square-root 
improves that (Figure 4.9[CL]), as does  logarithm (Figure 



4.9[BL]) and two composite operations. (Figure 4.9[CR] and 
[BR]). Which on of these we consider to be "best" depends 
on what we hope to achieve. What enhances the visibility of 
one part of an image may not be appropriate for another. A 
Machine Vision system is able to analyse the various parts 
of an image in quite different ways and, afterwards combine 
the results, if necessary. Humans and animals cannot do 
this, since they process the whole image at the same time. A 
machine can do this because it can store images. A brain 
cannot! We will consider this again later but let us return 
now to discuss contrast enhancement in more detail. What 
we have described so far is naive and very limited. 


A simple but very effective contrast enhancement procedure 
can be expressed in terms of two functions that we have 
already met: subtracting a constant and multiplying by a 
constant. Here is the definition of our new operation:


Find the minimum intensity in the image. Call this Imin.

Subtract Imin from the intensity value of each pixel in the 
given image. 

Find the maximum intensity in the new image resulting 
from Step 2. Call this Imax.

Rescale the intensity value of each pixel in the new 
image by multiplying by 255/Imax.


Applying this to the tiny image array that we used earlier, we 
get


Stretching intensity

Imin = 122

Rescaling: 2.18  [= 255/(239-122)]


(In this case, it is assumed that the minimum and maximum 
intensities have been calculated over this 5x5 pixel array, 



not over a larger image.) Notice that the minimum intensity 
is now 0 (zero) and the maximum 255. This process is 
called stretching the intensity scale. Figure 4.10 
demonstrates this on two low-quality images, prepared 
specially for this illustration. Such an impressive 
improvement in image quality is not always achieved and 
alternative techniques, such as those discussed later, might 
do even better.


Mapping functions 
Monadic functions can be expressed in another more 
general way, without the explicit use of mathematical 
notation. They can be defined instead, using a table of 
stored numbers. Figure 4.2 explains how a monadic 
operation can be performed using a Look-up Table (LUT). 
We will discuss later how suitable entries in such a table 
might be obtained. The LUT has the same number of entries 
as there are possible intensity levels (256) and defines how 
pixel intensities in the output image are derived from the 
those in the input image. A LUT is a very convenient way to 
implement a monadic function with an arbitrary Mapping 
Function. This might be pre-calculated in several ways:

(1) Applying a mathematical formula on a once-and-for-all 
basis

(2) Sketching a graph

(3) Performing some calculation on the image to fill the 
entries in the LUT. 


A LUT is well suited to implementation in either a computer 
or specialised electronic image processing hardware. Let us 
see how it works.




The equation defining the mapping function that performs 
the square-root operation is given in Figure 4.8. (This 
equation includes rescaling, which ensures that the result is 
always in the range [0,255].) In this form, this computational 
process requires that the square-root be evaluated afresh 
for each pixel. This inevitably involves a great deal of 
unnecessary repeated calculation, since most intensity 
levels occur many times in an image of reasonable 
resolution. The LUT provides an alternative and much faster 
way to obtain the same result. We only need calculate the 
mapping function values once, for each number in the range 
[0,255], and save the results in the LUT. (Method 1) The 
mapping function is then implemented by referring to the 
table for each pixel. This allows the calculation to be 
performed much faster and allows more general (i.e non-
mathematical) forms of monadic operator to be 
implemented. (Method 2) We can put any numbers, in the 
range [0,255] in the LUT. It can implement every monadic 
functions defined so far and many more beside. Later, we 
shall see how the contents of the look-up table can be 
calculated to obtain a monadic function that almost always 
achieves a significant improvement in image contrast. 
(Method 3) That is quite an exciting prospect!


The mapping function can conveniently be visualised by 
drawing the LUT contents as a graph (Figures 4.11 and 
4.12). Graphs like these enable us to understand what the 
mapping function stored in a LUT will do. For example, any 
upward-turning curve, like that in Figure 4.11[CC], is 
associated with a mapping function that suppresses detail in 
the dark parts of an image and accentuates differences 
between areas of light grey. On the other hand, a curve like 
that in Figure 14.11[CR] does the reverse. 




Thresholding 
Thresholding is a very useful image processing function but 
not in the obvious way that is usually anticipated by 
newcomers to our subject. The basic concept of 
thresholding is straightforward: each output pixel is set to


White, if its intensity is greater than or equal to some 
predefined number, called the threshold parameter.

Black, if it is not. 


Notice that the threshold parameter is held constant over 
the whole picture and that the result is a binary image.  


The effect of thresholding with different parameter values is 
illustrated in Figure 4.13. Intuitively, thresholding seems to 
be ideal for processing silhouettes of back-lit opaque 
objects. This typically produces an image in which there is a 
dark "blob", against a bright back-ground, while there are 
very few pixels with mid-grey values. Figure 4.14 shows one 
satisfactory result for a back-lit gear. The bar chart in Figure 
14[B] is called the intensity histogram. This is a statistical 
summary of the distribution of intensities in an image. Its 
derivation and uses will be discussed in more detail later. 
For the moment, let it suffice to say that, if the the histogram 
has two well-defined peaks, the bottom/centre of the "valley" 
indicates a good value for the threshold parameter. 


However, dangers are lurking! Figure 4.15 demonstrates a 
frequently encountered situation in which thresholding does 
not work well. (I can supply a short video demonstrating 
this) To the human eye, the outline of the bottle appears 
clearly defined but did you notice how dark the four corners 
of the image are? In this case, it is impossible to find a 
values for the threshold parameter that will simultaneously 



ensure that the bottle outline and background are intact. We 
will see later that it is possible to obtain a good outline of the 
bottle by other techniques, even though simple thresholding 
is unable to do so. Thresholding is just part of that more 
complicated procedure.


Intuitively, thresholding is an obvious way to reduce a grey-
scale image to binary form. Figure 4.16 provides further 
evidence that it does not always work well. Several times, I 
have argued about its efficacy with newcomers to Machine 
Vision, who find it difficult to believe that such an "obvious" 
technique will not reliably produce the good results they 
expect. The principal reasons for this is that the human 
visual system automatically compensates for slow variations 
in brightness, both in time and across space. As dusk 
approaches, the variation in ambient light is far from obvious 
to the eye, until the sun is close to the horizon. However, 
camera exposure settings must be adjusted over a wide 
range during this time, indicating that the light level does 
change significantly. Smooth spatial brightness variations 
are also accommodated by the eye, as is evident in Figure 
4.15. Any sharp intensity "steps" are noted immediately, 
whereas smooth changes may not be. To a machine using 
thresholding, gradual non-obvious background intensity 
variations may be critical. 


Despite these misgivings, thresholding is a very useful 
image analysis tool. It is widely used in simple industrial 
vision systems but care must always be exercised when 
designing the lighting, to ensure that thresholding will be 
both effective and reliable. 




Pseudo-colour 
Pseudo-colouring is a convenient way to improve feature 
visibility and, as, a result, is in widespread use, including 
areas such as thermal imaging, astronomy, scientific and 
medical microscopy and airport baggage x-ray inspection. 
Pseudo-colour exploits the eye's greater sensitivity to 
variations of colour compared to changes of brightness. 
When I first started studying image processing (mid-1970s), 
I worked on a project studying thermal signatures of ships. 
(Since then, I have avoided working on military applications 
of Machine Vision.) My students and I viewed and 
processed one particular monochrome thermal image, 
derived from a maritime scene, many times for two years. 
One day, we displayed it in pseudo-colour and immediately 
we saw a ship lurking on the horizon that we had never 
spotted before. Imagine what would have happened had 
that been a hostile vessel! The lesson is that, during visual 
examination of a scene, pseudo-colour is often able to alert 
us to things that we might never spot otherwise.


Pseudo-colour will be useful to us throughout this book. 
That is why it is introduced so early, alongside other image-
enhancement techniques. The process of pseudo-colouring 
a monochrome image requires nothing more that three 
monadic operators. (Figure 4.17)


Apply three separate monadic mapping functions to the 
grey-scale image, to produce three new images that we 
will call JR, JG and JB.

"Assemble" JR, JG, JB as the RGB components of a single 
colour image.


Designing the mapping functions for a pseudo-colour 
displays is probably best approached experimentally, 



although an experienced vision engineer can anticipate 
what will be "good" mapping functions. 


Figure 4.18 shows one popular pseudo-color mapping 
pattern: one component rises as the intensity increases; 
another falls, while the third increases to a maximum (at 
mid-grey) and then falls. Furthermore, we can combine 
pseudo-colouring with one or more monadic functions, such 
as negate, square, square-root, logarithm and anti-logarithm 
(exponential) (Figure 4.19) There is no single "best choice"; 
we use whatever is helpful. Some machines, designed for 
applications, such as x-ray baggage inspection and 
detecting tumours in body-scan images, allow the user to 
switch rapidly and easily between different pseudo-colour 
mappings. Some even update the mapping functions 
automatically, to produce a dynamic pseudo-colouring 
effect.


One particular application that uses pseudo-colouring 
deserves special note. Thermal imaging is frequently used 
by fire-fighters and disaster-rescue teams. It is also used to 
detect hot-spots in electrical, electronic and mechanical 
systems. (Figure 4.20) Another important application area 
for thermal imaging is in energy conservation, to detect 
places where heat is being lost rapidly from buildings. In all 
of these, it is customary to relate the intensity in the thermal 
image to the temperature of surfaces in the scene being 
viewed: hot spots are displayed as white or red, while cold 
areas are shaded blue. (Of course, this is contrary to 
physical reality, where hot bodies emit light with a high 
content of blue light and cooler ones glow red.) Pseudo-
colouring is often designed to preserve this convention. 
Sometimes, the pseudo-colour mapping is designed to 



retain the intensity of the original monochrome image. In this 
case, cool areas are mapped to dark blue, hot ones to bright 
red and very hot parts to white. (Several example are show 
in Chapter 7: Applications.)


We will encounter many more examples of pseudo-
colouring without further comment, as we progress through 
this book. The important things to remember are that 
pseudo-colouring is completely arbitrary and that its sole 
justification lies in being able to assist and augment human 
visual inspection. 


Dyadic operators 
Dyadic operators act on two pictures at once, to generate a 
third. (Figure 4.21) The intensity for each pixel in the output 
image is some arithmetic combination of the intensities of 
those pixels at the corresponding positions in the two input 
images. Let us define some notation, so that we can 
understand these operators easily.


A   	The intensity of the pixel in position [i,j] of the first input 
image (Blue)

B	 The intensity of the pixel in position [i,j] of the second 
input image (Green)

C The intensity of the pixel in position [i,j] of the output 
image (Red)


In what follows, the operation is performed for all pixels (i.e. 
for all i and j ) simultaneously. 


Adding two images 
C = (A+B)/2




(See Figure 4.22) This produces a result resembling a 
photographic double exposure. It is not used on its own very 
often. Multi-image addition is used sometimes to reduce the 
noise from cameras. 


Subtracting two images  
C = (A-B+255)/2 


This is far more useful for reasons that will be discussed in a 
little while. It produces an identical result to negating one of 
the input image and adding the result to the other input 
image. (See Figure 4.22)


Multiplying two images 
C = A.B/255 


This also produces a result resembling a photographic 
double exposure. It is not used very often.


Maximum of two images 
C = MAXIMUM(A,B)

This operator, called the Dyadic Maximum, is able to 
superimpose white pixels, perhaps forming text, a line 
drawing (e.g. annotation arrows), or a graph, on dark parts 
of an image. Elsewhere, the grey-scale image is 
unchanged. (Figures 4.23 - 4.24)


Minimum of two images 
C = MINIMUM(A,B)

This operator, called the Dyadic Minimum, is able to 
superimpose black pixels, perhaps forming text, a line 
drawing (e.g. annotation arrows), or a graph, on bright parts 
of an image. (Figures 4.25 & 4.26) Elsewhere, the grey-scale 
image is unchanged. It is often used to mask unwanted 



parts of an image. Dyadic Minimum can be used to mask a 
colour image by applying it to the RGB components 
separately. (Figure 4.27)


Reducing Noise by Combining Many images 
Video cameras inevitably generate a certain amount of 
"noise", which is visible as a dynamic speckle-like pattern 
superimposed on the ideal picture. Capturing two video 
frames, even if they are acquired consecutively, are slightly 
different, due to noise. As a result, even a smooth, uniform 
surface that is viewed under constant lighting conditions, 
has a slight speckle effect. Noise is a fundamental and 
unavoidable feature of all devices that convert light into an 
electrical signal. Thermal (infrared imagers and cameras 
operating under low-light conditions tend to generate 
particularly noisy pictures. For an image processing 
machine, noise is a nuisance: edges become jagged and 
plain areas appear mottled. We will describe some effective 
procedures for reducing the effects of noise in an image 
later but here we will demonstrate how the noise level noise 
can be by combining several images.


Noise is usually additive. That is, a "noise image", 
resembling a snap-shot of television "snow", is unavoidably 
added by to the signal that represents the scene of interest. 
The physics of photo-electrical energy conversion shows 
noise is unavoidable; it is not done deliberately. All the 
camera designer can do is reduce noise to the lowest 
possible level. An effective way to reduce the effects of 
additive noise is to add together several digital images 
captured from the camera's video stream. (Figure 4.28) For 
this to be effective, the scene being viewed must not change 
during the averaging process. Objects in front of the camera 



must not move, or change colour and the illumination must 
not be altered


Local Operators 

Local operators are simple image filters that combine the 
intensities of several pixels in order to calculate each new 
intensity value in the output image. They operate on a single 
input image. They can perform some very useful functions 
and are easy to implement.


Consider a group of 9 pixels centred on the [i,j] pixel. (That 
is, the pixel in column i and row j.) The intensity for pixel [i,j] 
in the output image is found by combining the intensities of 
the corresponding pixel and its 8 immediate neighbours in 
the input image. For convenience, we will use the following 
notation to represent these intensities:


Notice that I (upper case) is an intensity value and i (lower 
case) is a column number. E is the intensity of the [i,j] pixel. 
A is the intensity of the [i-1,j-1] pixel, displaced one row up 

Column i-1 Column i Column i+1
Row j-1 A B C
Row j D E F
Row j+1 G H I



and one column left from [i,j]. B is the intensity of the [i,j-1] 
pixel immediately above [i,j] and so on. 


We are now able to illustrate specific examples of local 
operators. Remember that the operations that we are about 
to describe are performed simultaneously for every pixel in 
the output image. The edges of the image require special 
consideration. For the moment, we will ignore this topic but 
will return to it later.


Local Averaging 
See Figure 4.29. Local averaging is the process of adding 
the intensities of a small group of close pixels and produces 
a slight blurring effect. For example. the intensity at pixel 
[i,j,] in the output image might be calculated as follows:


(A+B+C+D+E+F+G+H+I)

This generates in image in which the intensity values do not 
necessarily lie inside the range [0,255]. To ensure that they 
do, the formula should be modified to


(A+B+C+D+E+F+G+H+I)/9

This is an example of normalisation, which we have already 
encountered, when discussing monadic and dyadic 
operations. It will be ignored for the moment because it will 
distract us from other important issues. 


To emphasise the fact that the [i,j] pixel is being replaced, 
we can write this as an assignment:

E' ⬅︎ (A+B+C+D+E+F+G+H+I)/9

It must be understood that E to the right of the arrow refers 
to an intensity value in the input image and that E' to its left 



is in the output image. (All pixel values in the output image 
are effectively calculated at the same time.)


Blurring 
The blurring effect produced by local averaging can be 
increased in one of two ways:


Repeating the process several times.

Using a larger processing neighbourhood, for example 
5x5, 7x7, 9x9 and 15x15 pixels.


Blurring generated in this way is very much like that 
produced by mis-focussing a camera, or projector, or by 
squinting. Looking through smoke or thin fog, cloudy water 
and a translucent film produces a similar blurring effect, as 
do cataracts. These all lead to image degradation, so why 
are we interested in doing the same thing inside a 
computer? There are two reasons:


(a) By subtracting the blurred image from the original, we 
can eliminate variations  in background intensity, thereby 
making thresholding very much more reliable. We will 
encounter this combination of blurring, subtraction and 
thresholding many times in the following pages

(b) Consider an image that it totally black, except for a 
single white point. By applying a blurring operator, the point 
is spread out to form a fuzzy blob. (Figure 4.29[BL] and [BR] 
Notice that repeated application of a blurring filter, makes 
the image even more blurred. More about this later.) The 
diameter and shape of this fuzzy blob can be measured, 
alloying us to quantify and thereby control the blurring 
process. We refer this fuzzy blob as the Point-spread 
Function of the blurring operation. (Figure 4.29[BL] and 
[BR])




Edge Effects 
All local operators produce anomalies around the edge of an 
image. Edge Effects become larger as the processing 
neighbourhood (the kernel) is increased in size. (Figure 
4.30) A local operator based on a kernel of size 
(2m+1)x(2n+1) produces edge effects m pixels wide on the 
left and right of the filtered image and n pixels wide at its top 
and bottom.


The only safe way to accommodate edge effects is to ignore 
the edges of the image. (Blue area in Figure 4.30.)


Low-pass & High-pass Filtering  
Blurring is an inherent property of low-pass filtering: narrow 
stripes merge, whereas wider ones do not. Small, well-
separated spots tend to "melt" into the background; dark 
spots become brighter and versa versa. If the spots are 
close together they blend into one larger fuzzy cluster. Large 
areas with no sharp intensity steps are almost unchanged, 
except that their edges become blurred. 


Subtracting a blurred image from the original implements a 
high-pass filter. (Figures 4.31-4.33) This retains only small, 
spots and accentuates sharp dark-bright intensity 
transitions. 


A 3x3 high-pass filter can be implemented by the following 
formula which calculates a new value (E') for a single point 
in the output image). 


E'  ⬅︎ 8.E - (A+B+C+D+F+G+H+I)   	 (no normalisation)

or with normalisation




E' ⬅︎ (2040 + 8.E - (A+B+C+D+F+G+H+I))/4080  

A range of high-pass filters can be implemented, by 
subtracting the original image and the result of blurring 
using a large-kernel local-averaging filter.	


Directional filtering 
It is easy to modify the formula to blur in one direction only. 
For example, a 1-dimensional blur, in the horizontal 
direction, can be achieved by setting the intensity to 


E' ⬅︎ (D+E+F). 

To blur in the vertical direction, use


E' ⬅︎ (B+E+F). 

These have kernel sizes of 3x1 and 1x3 respectively.


Using the same terminology, consider the following filter

E' ⬅︎ (A+B+C)  - (G+H+I).


If used on its own, the first part of the formula defining the 
filter [i.e. (A+B+C)], blurs horizontally and shifts the image 
down by one row. On its own, the second part, (G+H+I), 
blurs horizontally and shifts the image up by one row. The 
minus sign between these two parts indicates that we 
subtract these two partial results. The overall effect is to 
highlight horizontal edges; the filter is sensitive to steep 
intensity gradients along the vertical axis. (Figure 4.34) 


Another, similar filter, based on the formula

E' ⬅︎(A+D+G) - (C+F+I)						

detects vertical edges.




Adding the monadic Fold operator (Figure 4.11[BR]), it is 
possible to produce an edge detector that is sensitive to 
both increasing and decreasing intensity changes. Here is 
the calculation for detecting sharp horizontal intensity 
gradients:


E' ⬅︎ | (A+D+G) - (C+F+I) |
[Note: |..| is the modulus function. I is a number.] 


Of course, 

E' ⬅︎ | (A+B+C)  - (G+H+I) |

detects sharp vertical intensity gradients


These two steps can be combined, using dyadic addition to 
create an edge detector that highlights all sharp intensity 
gradients, in any direction. Here is the formula


E' ⬅︎  |(A+D+G) - (C+F+I) | + [ |(A+B+C) - (G+H+I) | 
(No attempt is made here to normalise the intensity scale.) 


This is just one of the numerous of edge detectors that have 
been devised but it is not the best! Here the definition of 
another, the popular Sobel Edge Detector:

E'  ⬅︎ [ |(A+2D+G)-(C+2F+I) | + [ |(A+2B+C)-(G+2H+I) | ]/6
(Division by 6 normalises the output intensity to lie in the 
range [0,255].)


Weighted Local Operators

The component 	

(A+2D+G)
of the Sobel Edge Detector blurs the image but not as much 
as 


(A+D+G)




does. Sometimes, it is desirable to give greater emphasis to 
pixels near the centre of the processing neighbourhood. 
This is possible if we multiply each pixel within it by a 
different amount. For example we might use the formula


E'  ⬅︎ (A+2B+C+2D+3E+2F+G+2H+I)

to produce a mild blurring effect. Let us extend this idea to 
the a more general case. To do so, it is convenient to hold a 
set of multipliers (called Weights) in an array (called the 
Weight Array) thus:

The weights are combined with the intensity values within 
the 3x3 pixel processing neighbourhood as follows:

E' = A.Wa + B.Wb + C.Wc +

       D.Wd + E.We + F.Wf + 
         G.Wg + H.Wh + I.Wi


So, the weight array for the previous example is as follows:

Weight values are shown in blue. To appreciate the local 
operators better, let us consider some more examples. In 
each case, the input image consists of only 0s and 1s. 
(These are numbers, not logical values.) To make things as 

Wa           Wb          Wc

Wd       We       Wf

Wg       Wh       Wi

1              2              1       
2              3              2

1              2              1



simple as possible, normalisation will be ignored, except 
where stated explicitly.


Upright Cross 

A filter using the weight array

produces a maximum output value (5) when the image is 


Notice the use of both positive and negative weights.


Isolated White Point 
A filter using the weight array

produces a maximum output value (9) when the image i

-1             +1            -1                           
+1            +1        +1 

-1             +1            -1

0              1              0       
1              1              1

0             1              0

-1             -1             -1                           
-1            +9         -1 

-1             -1            -1

0             0            0                            
1            +1        0 

0             0            0



Counting White 8-Neighbours 
We simply use the following weight array to count pixels 
with intensity 1 and lying inside each3 X3 window.

We are using the local-averaging operator on a grey-scale 
image. That is, intensities [0,1] represent arithmetic values. 
Now, for a moment, think of [0,1] as logical entities. Blurring 
of the distinction between grey-scale and binary operations 
is very useful and we will return to this in the following 
chapter.


Detecting Specified Binary Patterns 
A filter using the weight array

produces a unique value for every possible pattern of 0s 
and 1s in the 3x3 neighbourhood. The output is in the range 
[0,511]. By thresholding it is possible to detect any specified 
pattern of 0s and 1s in a 3x3 neighbourhood. Very useful! 
Here is an example: the image

+1            +1            +1                           
+1            +1            +1 

+1            +1            +1

  1            2            4                            
8          16          32 


64        128     256

  1            0            1                            
0             1             0 

0              1         0



produces a value of 149 (= 1+4+16+128), so we can use 
this to detect the simple pattern ‘Y’.


Horizontal Smoothing & Vertical Differencing 
Here is a simple 3x3 weight array that performs horizontal 
smoothing & vertical differencing. 


The idea can be extended to larger processing windows 
and weight arrays. For example, here is a 9x5 weight array 
that provides greater smoothing along rows and detects 
slower intensity changes along columns.


This filter produces exactly the same results as this 9x1 filter

followed by this 1x5 filter


1              1              1           
0              0              1

-1           -1             -1

 1        1        1        1        1        1        1        1        1

 0        0        0        0        0        0        0        0        0

 0        0        0        0        0        0        0        0        0

 0        0        0        0        0        0        0        0        0

1        1        1        1        1        1        1        1        1


1        1        1        1        1        1        1        



Applying them in the reverse order also produces identical 
results.


Repeating Low-pass Filtering 
Applying a 3x3 local-averaging filter to an image with a 
single white pixel (intensity 1), while all other pixels are 
black (0) produces the following result.

Applying the same filter to this result yields the following 
image

Now, applying the same filter for a third time produces the 
image

 1           1            1

 1           1            1 

 1           1            1

 1           2            3             2           1

 2           4            6             4           2

 3           6            9             6           3

 2           4            6             4           2

 1           2            3             2           1 

+1

0

0

0

-1



Figure 4.29 shows that repeating a low-pass filter produces 
even greater blurring. The process can be repeated as 
many times as we wish but note that the image border 
covered by edge effects becomes progressively wider. 


The array just given (red) is an image array but suppose we 
use the same numbers to define a 7x7 weight array. This 
filter produces an identical result to that obtained by 
applying the 3x3 local-averaging filter three times. 


Another possibility: exactly the same result can be obtained 
in a sequence of six steps


• 1x3 local-averaging filter, applied times, followed by

• 3x1 local-averaging filter, applied three times. 


There are even more ways to achieve identical results, so 
we are free to choose one that makes the computation 
cheapest/fastest.


Non-linear Local Operators

So far, we have discussed so-called Linear Local Operators 
in which intensity values are added or subtracted. Now, we 

 1           3            6             7           6            3           1

 3           9          18           21         18            9           3

 6         18          36           42         36          18           6

 7         21          42           49         42          21           7

 6         18          36           42         36          18           6

 3           9          18           21         18            9           3

 1           3            6             7           6            3           1




turn our attention to local non-linear operators that combine 
intensities using the Maximum (MAX) and Minimum (MIN) 
operations. Here are two examples, based on a 3x3 
processing window 


Largest Neighbour (LNB)
E'  ⬅︎ MAX(A,B,C,D,E,F,G,H,I)

Smallest Neighbour (SNB)

E'  ⬅︎ MIN(A,B,C,D,E,F,G,H,I)

Larger processing windows are, of course, possible but 
these can be replicated by applying LNB/SNB several times.


The effect of LNB is to make bright regions slightly bigger 
and dark regions correspondingly smaller. Of course, SNB 
does the reverse. For this reason, LNB is often called 
Dilation and SNB Erosion. However, the latter are general 
terms and are often used when referring to filters with non-
square kernels. 


Two particularly effective edge detectors can be 
implemented by subtracting the result of LNB/SNB from the 
original image. (Figure 4.35)


Applying LNB then SNB does not reconstruct the original 
image. In fact, it tends to eliminate small dark spots and 
narrow dark streaks. If the result is subtracted from the 
original image, these features are clearly visible, while the 
background is "flattened". The result is a very useful filter, 
called a Crack Detector. (Figure 4.36 and 4.37). Sometimes, 
this process is termed Closing. If we use the operator 
sequence [SNB, LNB] instead, the filter is said to perform 
Opening.)




Cracks and scratches are common manufacturing faults and 
the Crack Detector has proved to be very useful in many 
practical applications, such as detecting thin fragments of 
bone in X-rays of fish and meat, thin wires, scratches, and 
of course, cracks. Since it highlights thing dark streaks, we 
must apply negation first, if we want to find bright lines.


Adding the images resulting from LNB and SNB applied 
successively is an efficient way to reduce "noise" in an 
image.


Another way to do this is to use the Median Filter, defined 
thus for a 3x3 kernel:


E' ⬅︎ FIFTH_LARGEST(A,B,C,D,E,F,G,H,I)
(Figure 4.38.) 


There are many more interesting possibilities. For example, 
an edge detector that is relatively insensitive to noise can be 
created by computing the following quantities:


E3 ⬅︎ SEVENTH_LARGEST(A,B,C,D,E,F,G,H,I)

E7 ⬅︎ THIRD_LARGEST(A,B,C,D,E,F,G,H,I)

E'  ⬅︎ |E3 - E7 | 

Notice that we are beginning to define image processing 
operators as sequences of simpler "building blocks". It is 
often very much easier to understand and design algorithms 
in this way, rather than trying to express the calculation in 
one large mathematical equation. 




Intensity Histograms 
We encountered histograms informally earlier, in Figures 
4.14 & 4.28. Now, we need to explain how they can help us 
to analyse an image in quantitative terms. 


A Histogram, properly called an Intensity Histogram, is a 
table of numbers indicating how many pixels have each 
possible intensity value. (Figure 4.39) 


Figure 4.40 shows three sample histograms. Notice that 
Figure 4.40[TR] has two distinct well-separated peaks. (It is 
therefore said to be Bi-modal.) Back-lighting opaque objects 
often generates histograms like this. Figures 4.14, 4.41[T], 
4.42[T] & 4.43 show further examples of bi-modal 
histograms. The valley between these peaks corresponds to 
the few pixels that are on the edge of the object silhouette. 
Placing an intensity threshold at the bottom/centre of such a 
valley is often an effective way to separate the object from 
its background. (Figure 4.42) However, back-illuminating a 
transparent object, such as a glass bottle, may produce a 
histogram in which there is no obvious valley. (Figure 
4.40[CR]). 


Before we move on, refer back to Figure 4.41[BR]. This 
strange form of histogram is sometimes found when an 
image has been JPEG coded.


Figure 4.44 shows the histogram derived from the 
monochrome image of a quiche and the histograms of its 
parts. Notice that the peaks they generate overlap, showing 
that they are not perfectly separable by thresholding. Figure 
4.44 also shows the results of thresholding at the intensity 
levels corresponding to the valleys in the histogram.




The histogram can be used as an analytical tool, for 
example, to study information loss caused by image coding. 
In Figure 4.45, the histograms of an image and its JPEG-
coded version are quite different, even though the images 
themselves are visually very similar. When these images are 
subtracted, we obtain what seems to be a meaningless 
noisy mess. (Figure 4.45[BL]) However, the histogram of 
this difference image is revealing: it consists of a single 
narrow spike (Figure 4.45[BR]) whose width is a measure of 
the accuracy of the JPEG coding: a narrow spike indicates 
that little information has been lost.


Cumulative Histogram  
The Cumulative Histogram is derived from the intensity 
histogram by a simple recursive calculation, involving only 
addition. Let h(i) be the intensity histogram value for 
intensity level i and H(i) the Cumulative Histogram value. 
Then, we calculate H(i) as follows


H(i)  = H(i-1) + h(i)
where


H(0) = h(0).

This is illustrated in Figure 4.46. Also see Figure 4.47.


The cumulative histogram is often more useful than the 
intensity histogram when we want to measure a grey-scale 
image. For example, we can use the cumulative histogram 
to calculate the intensity threshold that segments the image 
in given proportions. For example, the 5% and 95% centiles 
(called C(5) and C(95)) might be used to stretch the 
intensity scale, to improve contrast. The calculation is as 
follows:


X' = 255*( X - C(5) )/( C(95) - C(5) )



(This inevitably requires hard limiting, to ensure that the 
result lies within the range [0,255].) X' is the pixel intensity 
after rescaling and X is the intensity before. Of course, other 
pairs of centile values might be used instead. (e.g. 2% and 
97%) (Figure 4.48) Rescaling intensity like this ignores both 
extremely bright and extremely dark pixels and makes the 
process less sensitive to noise than the simpler alternative:


X' = 255*(X - Imin)/(Imax - Imin)

where Imax and Imin are the maximum and minimum 
intensity values, calculated over the whole image. 

Histogram Equalisation 
However, the greatest benefit provided by the cumulative 
histogram is that it forms the basis for a very effective 
contrast enhancement procedure, called Histogram 
Equalisation. (Figure 4.48)


Let us assume that the image has a total of N pixels and 
that, as usual, we want to normalise the calculated intensity 
values to stay within the range [0,255]. As before, let us 
represent the cumulative histogram by [H(0), H(1), H(2), 
H(3), ..., ,H(255)]. First, we rescale the cumulative histogram 
thus


R(i) = 255*H(i)/N, for i = 0, 1, 2, 3, ..., 255.
Then, we use the rescaled values, [R(0), R(1), R(2), 
R(3), ..., ,R(255)], to fill the look-up table for a monadic 
operator (Figure 4.2) and apply this to the original image. 
The histogram of this modified image is (nearly) flat, 
whatever the initial shape of the histogram. 


  Let us summarise this process:




• Calculate the intensity histogram of the original 
image.


[h(0), h(1), h(2), h(3), ..., ,h(255)].
• Compute the cumulative histogram


[H(0), H(1), H(2), H(3), ..., ,H(255)].
• Rescale the  cumulative histogram and load these 

values into the look-up table for a monadic operator.

[ R(0), R(1), R(2), R(3), ..., ,R(255) ]

• Apply that monadic operator to the original image.


Histogram Equalisation can be applied to just part of an 
image. For example, black pixels might be ignored when 
calculating the mapping function.  


Histogram Equalisation is just one of a range of powerful 
Histogram Modification procedures. In Figure 4.49, 
histogram equalisation has been applied in association with 
pseudo-colouring, to enhance the differences existing in a 
low-contrast image. It can also be used in combination with 
other monadic operators, such as negate, square, square-
root, logarithm, exponential, etc. Choosing the "best" 
combination, for a given application is most effectively 
achieved interactively, by experimentation.


Histogram Equalisation allows us to threshold an image so 
that any given percentage of the resulting binary image is 
white. This is particularly useful for pre-processing textured 
images. In Figure 4.50 three threshold values (giving 25%, 
50% and 75% white) are used. None of them is totally 
satisfactory, due to the uneven lighting. Although, fixed-level 
thresholding fails, Histogram Equalisation does not, as it 



clearly demonstrates that the original image is not good 
enough. 


Local Area Histogram Equalisation 
Histogram equalisation can be useful for preprocessing, as 
a step towards analysing image texture. However, applying 
the procedure to the complete image can be disappointing 
as Figure 47(B] and Figure 50 show. What appear to be 
minor changes in the intensity of the background are, in fact, 
critical. 


One seemingly attractive way to avoid problems caused in 
this way is to apply Histogram Equalisation to small parts of 
an image. Small adjoining non-overlapping patches, 
covering the whole of the input image, would be processed 
separately and then "reassembled" to form a complete 
image. Unfortunately, this does not work very well, because 
the edges of adjacent patches show marked intensity 
differences. We will not pursue this approach.


A superior solution is to perform the histogram-equalisation 
calculation for a block of pixels covering a small compact 
region of the image but keep the result for only the central 
pixel. The processing window is scanned across the entire 
input image and the process repeated for each pixel. This is, 
of course, exactly what a non-linear local operator does. 
The name of this operation is fairly obvious: Local Area 
Histogram Equalisation. The same result can be obtained in 
a simpler way: within each processing window, count the 
number of pixels that are brighter/darker than the central 
pixel. (Of course, some rescaling may be needed.) Figure 
4.51 shows Local Area Histogram Equalisation applied to a 
sample of plain carpet. Compare this result with Figure 4.50.




Row Integration & Row Maximum 
These are two operations that seemingly do not have any 
real value. However, they are both invaluable components 
of more complex procedures. Figure 4.52 explains them 
both. Figure 4.53 illustrates the use of row maximum and 
Figure 4.54 how row/column integration can be used to 
detect linear features that are aligned parallel to one of the 
image axes. Figure 4.55 demonstrates how sensitive row 
and column integration are to the orientation of those 
features.

 

Image Rotation 
Image rotation is not as straightforward as we might think. 
(Figure 4,56) Sharp edges are always degraded to some 
extent by rotating a digital image. The reason is explained in 
Figure 4.57[T]. There are two simple approaches to 
estimating values for those output pixels that do not coincide 
exactly with input pixels:


• Choose the nearest neighbour. (D in Figure 4.57[B])

• Use interpolation to estimate an appropriate value. 

Linear interpolation of the values of the four nearest 
pixels (A, B, C and D in Figure 4.57[B]) is the 
simplest and most obvious.


Image Warping 
Rotation and warping share the same fundamental difficulty 
that is summarised in Figure 4.57. Why should we be 
interested in warping images? There are several reasons:


• A vantage point close to the subject introduces 
geometric distortion.


• Lenses can introduce significant geometric distortion.




• Images may be derived from non-standard cameras.

• The surface being viewed may be curved.


Industrial vision systems are sometimes required to inspect 
an object, rotating continuously using a line-scan camera. 
(Figure 4.58. Also see Chapter 2) In this situation, it is often 
advantageous to convert polar coordinates (circular) to 
Cartesian coordinates (rectangular). (Figure 4.59) The 
reverse axis transformation allows us to reconstruct an 
image that can be compared to the normal view. (Figure 
4.59[TL]). While we can process images in either format, 
filtering results will not be the same because pixels in the 
polar-axis version are not evenly spaced. (Figure 4.58[BR]) 


Figure 4.60 demonstrates a situation where it would be 
easier for a program to interpret the polar-coordinate image 
than the Cartesian-coordinate version that a standard 
camera generates.


Imagine trying to inspect the mouth of a bottle, using a 
standard array camera (not line-scan) looking vertically 
downwards, onto its top. Most of the interesting detail is 
conveyed by pixels near the edges of the image; there are 
many "wasted" pixels within the mouth of the bottle. These 
occupy computer memory and reduce the speed of 
inspection (measured in bottles/minute) Figure 4.61 shows 
how the "hole in the middle " can be removed.


Figure 62 and Figure 63 demonstrate several more 
examples of image warping. Geometric distortion can often 
be corrected satisfactorily by software, provided the 
d is tor t ion mapping func t ion can be expressed 



mathematically, or derived empirically from experimental 
observation. Like rotation, image warping requires 
interpolation and it therefore inevitably associated with loss 
of resolution, in some locations worse than others

 The following situations: can benefit.


• Close-up viewing (Figure 4.63[TC]) 

• Viewing a spherical, cylindrical surface

• General curved surface such as a page in a thick 

book (Figure 4.63[BC]) 

• Pin-cushion and barrel distortion (Figure 4.63[TR])

• Lens distortions (e.g. cylindrical, fish-eye and 

anamorphic lenses)

• Reflections on surfaces, such as cylinders, cones 

(Figure 63[BR])

• Images derived from flying-spot scanners.

• Variable central ("foveal") & peripheral resolution.


Detecting Straight Lines 

The Radon Transform (RT) is used to detect linear features 
in images. When combined with an edge-detection operator, 
it can detect continuous lines, straight edges and linear 
arrangements of disconnected spots. It is an analytical tool  
and, as such, does not show visually recognisable features 
seen in the original image.


The Radon Transform, combines image rotation and row-
integration, so let us look at these first. Refer to Figure 4.55 
again. It illustrates the directional sensitivity of the row/
column-integration operator. Figure 4.64 demonstrates the 



ability of row-integration to detect when printed text is 
aligned to the horizontal image axis. Figure 4.65 illustrates 
the same point, with reference to multiple micro-electronic 
devices on a ceramic plate                                                                             


The procedure for generating the RT, is defined thus:

1. Repeat steps 2-4 for suitable values of N. (e.g. N =  

0:179)

2. Rotate the input image by angle N.k, where k is a 

constant. (e.g. k = 1˚)

3. Row-integrate the result of step 1.

4. Copy the right-most column of the image generated in 

step 3 and place it into column N of the RT output 
image.


Notice that we can adjust the range of angles and the 
constant k (angular increment for image rotation) So, for 
example, we might generate a coarse, wide-angle RT (e.g. 
N = 0:19, k = 5˚) or a narrow, high-resolution version (e.g N 
= 25:125, k = 0.1˚) 


Figure 4.66 shows how the RT is used in practice. Notice 
the bright spots in Figure 4.66[CL], each of which indicates 
the presence of a strong linear feature in [TR]. It is possible 
to relate the position of bright spots in the RT to linear 
features in the original image. This results in the Inverse 
Radon Transform. Figure 4.66[BL] and Figure 4.67  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