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Sample Applications

Chapter 7
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MOTIVATION: HIGH PRODUCTION SPEED

This picture illustrates a situation where automated inspection is essential: 100% visual 
inspection is impossible because the production rate is too high.   


There are numerous places on a bottling line where a vision system might be employed, 
such as:


• Examining a wide scene of the transport  system, to ensure its smooth operation 


• Inspecting unfilled bottles for faults 


• Making sure that the caps are fitted properly


• Checking the filling level.


• Checking labels
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 MOTIVATION: NO PEOPLE AROUND

This picture reinforces the message outlined on the previous page. Sometimes there are 
no personnel in place to take remedial action if anything goes wrong. Vision systems can 
provide vigilant monitoring of the manufacturing and transportation systems with little or 
no human involvement.


The vision system might be required to examine every product, to take a broader view for 
statistical-analysis purposes, or to monitor/control the manufacturing process.
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MOTIVATION: AVOIDING UNPLEASANT/DANGEROUS CONDITIONS 

Vision systems  can take over from human inspectors when the working conditions are 
unpleasant or dangerous. Inspecting red-hot steel strip is a prime example. A camera 
can be placed close to the hot material, where a person cannot work safety. Moreover, 
a machine might be able to detect defects that a human being cannot see by using  
non-visible radiation (infra-red)
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MOTIVATION: ROBOTS NEED EYES TOO!

Automated manufacturing, using robots, requires vision for a number of reasons. It can-
not be assumed that a robot will pick up objects perfectly every time. They may be 
faulty, oily or slightly out of position. The robot's gripper may be contaminated with oil, 
worn, or physically damaged. For the sake of safety and to ensure continuity of produc-
tion, robots need watching, by an independent camera-computer system. Vigilant mon-
itoring of robot operation is required at all times, 


A vision system can also guide robots in its operation cycle, take measurements. It can 
accommodate flexible  materials (e.g. fabric),  non-rigid packaging and highly-variable 
objects, such as fruit, vegetables and food products (e.g. pizzas).
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MOTIVATION: INSPECTING WITHOUT TOUCHING

Machine Vision is ideal for inspecting food products. By providing non-contact sensing, it 
is completely hygienic and does not disturb even the softest of materials.
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WRONG QUESTION: WHAT IS THIS?

In a factory, the product is always known. For this reason, an industrial vision system 
need not address answer general open-ended questions such as "What is this?". Instead, 
it should answer more precise questions, for example "Is this a well made …?”


The effect of this single point is profound: industrial Machine Vision systems can be made 
faster, cheaper, more reliable and more accurate.


Natural products such as fruit, vegetables and food products (e.g. pies, cakes, pizza, etc) 
are more variable than engineering artefacts.. Even here, specific questions can be 
posed. For example, tomatoes are green, yellow, orange or red: they are never blue. 
Neither are they ever bigger than 100mm in diameter and tomatoes smaller than 5mm are 
of no value.


Designing industrial vision systems should always take account of application knowledge; 


Emulating a human being, a vision system should never be the primary goal. 


* Relaxing in warm volcanic sand
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VISION SYSTEMS ARE NOT PRETTY BUT THEY MUST BE TOUGH

Automated Visual Inspection systems are not photogenic but they must be 
tough: able to withstand very harsh environments, flying debris, dust, steam, 
air-born aerosol contaminants, malicious damage (by disgruntled workers), 
high temperatures high /variable ambient light-levels. These are all hazards 
that must be tolerated for a vision system designer to consider. Moreover, the 
ma chine must allow easy cleaning and unjamming. It must also protect fact-
ory personnel, particularly from flashing lights, laser radiation and x-rays.


The photograph shows an x-ray inspection system used in the food industry. 
It has a lead-lined radiation-protection enclosure and can be stripped down 
for cleaning in as little as 30 seconds. Cleaning involve may involve spraying 
the equipment with a high-pressure water jet, or steam. There is one more re-
quirement: it must be designed to avoid trapping of food waste.


Neglect of any of these issues may render the inspection system useless, 
however clever the  inspection software is.
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A MACHINE HAS A DIFFERENT POINT OF VIEW

To the human eye, the two oblique views of the object (an hydraulics manifold) in the top 
row give a good impression of its shape. However, for a vision system, orthogonal views 
(central and bottom rows) are more useful  and allows more precise measurements to be 
taken. Since sustained, precise positioning is needed to obtain high-accuracy measure-
ments the two images in the top row are of little practical use. (Obliques views may be 
useful to peer into holes to examine their side walls.) The general point to note is that 
human and machine vision have different strengths and weaknesses and different viewing 
angles.
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DON'T BE FOOLED BY A PRETTY PICTURE

(Top-left) To the human eye, this 
is "a good picture" of a petrol-
engine spark-plug but it is almost 
useless for a Machine Vision sys-
tem. (This is a JPEG image. 
JPEG coding presents of prob-
lems for automated analysis and 
should be avoided where pos-
sible.)


(Top-right) An inaccurate meas-
urement of the width of the spark 
gap is obtained from this  ex-
panded view of [TL]. 


(Centre-left) The ceramic insu-
lator appears to have a well-
defined edge in this expanded 
view of [TL].


(Centre-right) Contrast-en-
hancement emphasises a serious 
deficiency of JPEG coding. The 
edge appears ragged


(Bottom-left) The screw-tread 
appears  to have a smooth edge 
in this expanded view of [TL].


(Bottom-right) Processing {BL] 
shows a ragged edge
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DON'T WASTE PIXELS

(Top) A spark-plug has three crit-
ical areas: white insulator, screw 
thread and spark-gap. Since it is 
long and thin, over two thirds of 
the pixels (black, 65.6%) are nev-
er required for inspection. This 
assumes that the spark-plug is 
always examined in the same po-
sition and orientation. Inspecting 
the insulator requires only 11.7% 
of the pixels (blue square); the 
screw thread, 4.7% (mauve 
square); the spark gap 1.6% 
(green square).  


(Centre-left) If the spark-plug is 
always examined in the same po-
sition and orientation, black pix-
els are not of interest. Image pro-
cessing speed can therefore be 
improved, simply by ignoring 
them


(Centre-right) If the orientation is 
fixed but the position is allowed 
to vary, more pixels must be pro-
cessed.


(Bottom-left) If the position is 
fixed but the orientation is al-
lowed to vary, the black pixels 
can be ignored.


(Bottom-right) If the position is 
fixed but the orientation are both 
allowed to vary, the number of 
pixels that can can be ignored 
(black) is decreased considerably.
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IGNORE THE FACT THAT IT IS PLASTIC - IT IS GREEN & RED

A Machine Vision is concerned solely with appearance. As far an Automated Visual Inspec-
tion system is concerned, this a green and red object. The fact that is made from moulded 
plastic is totally irrelevant!
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GENERIC CLASSES OF PROBLEMS REQUIRE ARTIFICIAL INTELLIGENCE

A system that is claimed to be capable of inspecting a broad and ever expanding class of 
objects (e.g. Pizzas) must be intelligent and involve machine learning. Its input would con-
sist of a series of "general-purpose"measurements such as the following:


• Diameter


• A measure of deviation from circularity 


• Average width of the bare crust around the edge.


• Average area and number of red/green/black blobs bigger than XXX pixels


• A (numeric) measure of the colour of the "background"


• A (numeric) measure of the "randomness"/uniformity of the topping


• etc.


These measurements can be based upon the ideas discussed elsewhere in this book.
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EXPECT THE UNEXPECTED (If anything can go wrong, it will go wrong!)

An Automated Visual Inspection system must be designed to accommodate the un-
expected. Defective objects presented to it for examination are likely to be very 
variable in form. It must be able to handle them, without becoming jammed, or 
damaged. 


[Picture: Rail accident, Montparnasse, France 1895] 

One approach to this to design a Machine Vision system that is able to learn what is 
“usual”. On a mass-production line, any product that deviates too far from the norm 
is defective and should be rejected.
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MEASUREMENT BY PROXY

Measurement by proxy offers 
an important “escape route” 
when it is not possible to estim-
ate an important parameter dir-
ectly For example, the volume 
of an apple is a good estimator 
of its weight and an approxim-
ate estimate of volume can be 
calculated from two orthogonal 
side views, For an egg, just one 
would suffice, because it is ro-
tationally symmetrical. 


In the illustration opposite, four 
measurements are directly (non-
linearly) related to each other. 
Measuring any one of them 
uniquely determines the values 
of the other three. 


(Top-left) The distance between 
the tips of the blades 


(Top-right) The area of one of 
the major bays (red).


(Bottom-left) The distance 
between the centroids of the 
lakes (white).


(Bottom-right) The angle 
defined by the red lines.
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Section 1


GLASS & CLEAR PLASTIC
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BOTTLE SHAPE (checking that the sides are parallel and vertical)

(Top-left) Original image, 
back illumination. The 
corners are darker that the 
rest of the background, due 
to poor lighting.


(Top-centre) Edge detector. 
Eliminates back-ground 
shading. 


(Top-right) Binary image, de-
rived from [TC].  


(Centre-left) Straight lines fit-
ted to the sides. These allow 
us to check that the bottle 
has parallel sides and that its 
axis of symmetry is vertical. 
Geometric distortion is due to 
the lens.


(Centre-centre) Checking 
that the bottle is vertical & 
symmetrical. Thite arc is 
equidistant from the left- and 
right-most edges. Ideally, it 
should be a vertical straight 
line.


(Bottom-left & Bottom-
centre) Checking that the 
shoulder is well formed. Each 
circle was fitted to three 
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THREAD ON A 

(Top-left) Original image, 
obtained using back illu-
mination. 


(Top-right) Top and sides 
of the mouth region iden-
tified. 


(Bottom-left) Differences 
between the silhouette 
and its convex hull. 


(Bottom-right) Dark hori-
zontal streaks identified. 
One mild blurring filter 
and another strong blur-
ring filter were applied 
and the resulting images 
subtracted. The resulting 
image was then threshol-
ded. Unwanted clutter at 
the sides has been elim-
inated, by masking.
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CLEAR PLASTIC BOTTLE

Many of the techniques used to 
inspect glass can also be used 
on clear plastic bottles. Although 
their refractive indices are differ-
ent, the main difference is the 
thickness of the walls of the 
bottle.  These images also 
demonstrate the difference 
between the images obtained us-
ing back-and dark-field illumina-
tion  

(Top-left) Original image, back il-
lumination. 


(Top-right) Binary image derived 
from [TL]. 


(Bottom-left) Original image, 
dark field illumination. 


(Bottom-right) Binary image de-
rived from [BL].
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BOTTLE-WALL DEFECTS (bird-swing or birdcage)

BIrd-swing (or Bird-cage) is a filament of glass spanning the interior of a bottle.It is cre-
ated by a manufacturing fault and can only be detected visually. A 2-stage moulding pro-
cess is used to make bottles.  


(Top-left) BIrd-swing, side view, back lighting. 


(Top-right) BIrd-swing, end-on view, back- lighting. [A colleague gave me this bottle, 
which had contained black-currant juice.]


(Bottom-left)) BIrd-swing, dark-field illumination. 


(Bottom-right) Spike, dark-field illumination. This is a “stalagmite” of glass. Again, this is 
a manufacturing fault and occurs in jars, made by pressing the semi-molten glass into a 
mould. A spike can be formed as the plunger is withdrawn. [My daughter was given milk 
to drink from this bottle. Fortunately, my wife realised in time!] 
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SHATTERED SAFETY GLASS / CRACKLE GLASS

The fracture pattern of shattered glass is an important feature of automobile wind-
screens, determining its safety in an accident. The illustration here uses Crackle Glass, 
which is used for its decorative effect.


(Top-left) Original image, back lighting. 


(Top-right) Binary image, showing individual glass fragments. 


(Bottom-left) Fragments shaded according to size: largest are brightest. (8 size categor-
ies) Fragments on the edge of the image have been removed, since they would distort 
the measured distribution of sizes. The aspect ratio of these fragments is an important 
safety parameter and can be estimated in a number of ways.


(Bottom-right) Rendering [BL] in pseudo-colour for easier viewing
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LENS (visualise the warping effect of the lens)

Using a patterned back-
ground to visualise the' 
warping effects of a vari-
able-focus lens. 

(Top-left) Original image. 
The lens is in front of a 
regular square grid.


(Top-right)  Mesh  has 
been reduced to thin arcs


(Centre-left) Invert the 
contrast, ready for next 
operation in [CR]. 


(Centre-right) Grass-fire 
transform applied to [CL]. 
Notice that big "cells" are 
brighter than small ones. 

(Bottom-left) Find the 
local maxima in [CR] and 
represent the peak intens-
ity in pseudo colour. Red 
spots indicate large "cells; 
green and blue, smaller 
ones.


(Bottom-right) Horizontal 
and vertical arcs in [TL] 
have been separated. The 
curvature of these arcs 
can be measured to 
quantify the warping ef-
fect of the lens.
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BOTTLE SIDE-WALL THICKNESS

(Top- left) Original image, glass tumbler with a thick base (Below A) and partially filled 
with water(A to B). The background stripes are distorted by irregularities in the thickness 
of the glass and are magnified by the cylinder of water, which acts as a crude lens. 


(Top-right) Binary image, with edge contours superimposed. 


(Bottom-left) The vertical centre lines of the bright stripes have been detected. The 
straightness and thickness of the vertical white lines provide a quick, easy and approxim-
ate way to check the thickness of the side walls of the the tumbler. 


(Bottom-right) A jar filled with water viewed against background with a single dark stripe 
(between the red arrows). The lens formed by the cylinder of water magnifies the dark 
stripe, providing a simple check that the jar is full. 
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CHECKING FILLING LEVEL OF A GLASS VIAL

 (Left) Original image, obtained using back-lighting. 


(Right) Top and bottom of the meniscus. detected using row integration and simple 
thresholding. 
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BOTTLE-SHAPE ANALYSiS (dark brown, glass vial)

Inspecting a small dark-brown glass vial. 


(Top-left) Original image, dark-field illumination.


 (Top-right) Edge detector. 


(Bottom-left) Binary image, derived from [TR] by thresholding and filling lakes. Red pixels 
indicate the centres of the horizontal white chords. Ideally, this should be a vertical 
straight line. 


(Bottom-right) The binary image in [BL] was flipped about a vertical line passing through 
the centroid. The resulting image was then subtracted from [BL]. Ideally, this should con-
tain only grey pixels. 
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BOTTLE-MOUTH INSPECTION

Faults around the mouths of bottles  present a serious health hazard as sharp glass 
fragments can be swallowed.When I was a boy, glass from the broken top of a milk bottle 
got stuck in my throat. Fortunately, I was able to cough it up with only minor bleeding.  
There are several types of critical defects:


• Cracks and splits


• Chipped


• Fragments of glass attached, loosely or firmly, to the inner edge of the mouth.Either of 
these can be dislodged when a filling tube is inserted into the mouth
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BOTTLE MOULDING FAULTS

Moulding fault. This spectacular “fin’ was created when the two halves of the mould 
did not close properly; molten glass flowed into the gap between them. A fault like this 
can easily be broken, creating a sharp edge capable of causing serious hand injury.


Also see 

"A Vision for the Future", J Victor, URL http://old.emhartglass.com/files/A0035.pdf, 
Accessed 1st May 2020


"New Standard for the Inspection of Glass Bottles", Miho, URL https://miho.de/en/ap-
plications/glass-bottles/, Accessed 1st May 2020.



Section 2


NATURAL PRODUCTS

29



30

ESTIMATING ANIMAL WEIGHT (pigs)

A system for estimating the size and shape of live pigs was described by J. A. Marchant 
and C. P. Schofield (Machine Vision  for the Inspection of Natural Products, Chapter 13) 


In practice, several cameras would be needed to obtain a reliable weight estimate. It is 
helpful if the animal is constrained during image capture. 

(Top-left) Original image.


(Top-right) The animal's silhouette was obtained using a colour recognition filter.


(Bottom-left) Outline of the silhouette superimposed onto the grey-scale image.


(Bottom-right)  The outline of the animal's body, was derived from [TR] using  morpholo-
gical erosion.
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CUTTING POINTS FOR PLANT MICROPROPAGATION

Dissecting an open-struc-
ture plant for microp-
ropagation. 


(Top-left) Original image. 


(Top-right) After applying 
the “crack detector” al-
gorithm.


( C e n t r e - l e f t ) A f t e r 
thresholding [TR].


(Centre-right) Very small 
white blobs in [CL] have 
been eliminated. 


(Bottom-left) Joints on the 
skeleton in [CR] indicate the 
cutting points at nodes on 
the stem. By cutting the 
plant just below and just 
above such a point, we ob-
tain a tiny "Y" of plant ma-
terial that can be replanted 
in a nutrient material. This 
process is the repeated for 
each plantlet every 3-4 
weeks.
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PLANT SHAPE (estimating the health of a decorative house plant)

(Top-left) Original im-
age.


(Top-right) B-image, 
provides best contrast. 


(Centre-left) [TR] after 
thresholding.


(Centre-right) Principal 
axis and contour show-
ing row-by-row centre 
point of the leaf cover. 
(Ideally, this should be a 
straight vertical line.)


(Bottom-right) Convex 
hull of [CL]. The ratio of 
the area of the leaf 
cover, compared to that 
of the convex hull is a 
measure of “solidity”.


(Bottom-right) Graph 
s h o w i n g t h e t o t a l 
amount of leaf cover in 
each row.
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SEEDLINGS

(Top-left) Original image.


(Top-right) Intensity and 
RGB component images. 


(Centre-left) Output of a 
colour filter designed to 
detect leaf-green. 


(Centre-right) When the 
seedlings are well separ-
ated, or overlap slightly, it 
is possible to locate and 
analyse each plant indi-
vidually.


(Bottom-left) A program 
recursively places circles 
into the white areas. These 
circles are crude indicators 
of leaf size.


(Bottom-right) Centres of 
the circles. These are in-
cluded here to emphasise 
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MONITORING FLOWER DEATH

Identifying wall-flowers us-
ing a colour-recognition fil-
ter. Image [TL] was created 
during a research study of 
flower-death processes, 
by Hilary Rogers & Andrew 
Harr ison, Cardiff Uni-
versity.


(Top-left) Original image. 
The small round spots are 
coloured paper markers, 
used for image registra-
tion. 


(Top-right) Intensity. {I-im-
age) 


(Centre-left) Hue. (H-im-
age) 


(Centre-r ight) Colour 
scattergram in the HS 
plane. 


(Bottom-left) Colour map, 
obtained by processing 
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TREE GROWTH RINGS

(Top-left) Original image. 


(Top-right) Intensity and 
RGB component images. 


(Centre-left) After filter-
ing, thresholding and 
thinning. The broken con-
tour in the red box is 
shown enlarged in [BR].


(Centre-right) Joining 
gaps.


(Bottom) One white bar 
has been found for each 
growth ring. This creates 
a "bar code" that can be 
compared with other 
samples fo r dendro-
chronology
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Section 3


FOOD &

FOOD PRODUCTS
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PORK PIE (checking fat content) 

(Top-left) Original image. 


(Top-right) Intensity image 
(I-image)


(Centre-left) Bright spots 
fat) in [TR] detected.


(Centre-right) Intensity pro-
file along the horizontal red 
line.


(Bottom-left) Outer crust 


(Bottom-right) Expanded 
view of the edge of [TR]. 
The intensity profile shows 
how the fat is penetrating 
into the pastry crust..
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PROCESSED MEAT (checking fat content) 

(Top-left) Original image. 


(Top-right) R-image


(Centre-left) G-image


(Centre-right) B-image


(Bottom-left) Intensity 
histogram of the B-image 


(Bottom-right) [CR] 
thresholded as indicated 
in [BL].

A quick web search shows that there that there are several different approaches to 
measuring the fat content of meat. These can be based on: visible light, x-rays (singe- 
and dual-wavelength), or microwaves. Even a standard colour image produces promises 
results.
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LOAF SHAPE - 1 

(Top-left) Original (binary) im-
age. 


(Top-right) "Intensity cone". 
The brightest point of the 
"cone" was placed at the 
centroid of the slice. 


Centre-left) Intensity histo-
gram of [TR]. Notice that this 
is independent of orientation 
of the slice. 


(Centre-right) As [TR] but 
with a reduced number of grey 
levels. The intensity histogram 
of this image is still independ


ent of rotation. 


(Bottom-left) Grassfire trans-
form, with a reduced number 
of grey levels. The intensity 
histogram is independent of 
rotation. 


(Bottom-right) Circular 
wedge, with a reduced num-
ber of grey levels. This method 
can easily be extended to 
make it independent of rota-
tion.
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LOAF SHAPE - 2

(Top-left) Minimum-area 
rectangle.  


(Top-right) Circumcircle..


(Centre-left) Convex hull. 
The two coloured regions are 
bays that should have ap-
proximately equal areas. 


(Centre-right) Circle fitted to 
the top of the slice, fits ac-
curately between points A 
and E. 


(Bottom-left) Circles fitted 
to the overspill areas.
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TEXTURE (bread crumb)

(Top-left) Original image, 
obtained from a machine-cut 
bread slice. Uniform front 
lighting was used. Grazing 
illumination can provide 
higher image contrast.


(Others) Binary images with 
varying levels of grey-level 
morphological filtering, fol-
lowed by thresholding so 
that 50% of each image is 
white (ignoring edge effects).


It is possible to generate a large number of crumb-texture measurements, based on a 
combination of grey-scale filtering, binary-morphology operators and thresholding. The 
five binary images shown here were generated by varying only the grey-scale filtering. 
Thresholding was then applied, so that 50% of the pixels are white. (Edge effects are ig-
nored.) We can then apply several directional binary morphology operators to each of 
these. Finally, a multi-element measurement vector is formed, simply by counting the 
blobs in these images. A learning program can then be trained to detect “unsatisfactory” 
textures.
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LOAF SHAPE (projecting light stripes, "structured light")  

A series of parallel light stripes is projected onto the surface of the loaf. (They can be col-
oured to make it easier to separate them and to join “broken” stripes.) The camera views 
the projected pattern from an oblique angle. The surface height follows from a simple 
calculation.


(Top) Optical arrangement. 


(Bottom) Left-to-right: (i) Side view: (ii) Top surface; (iii) Light stripes projected onto the 
top surface; (iv) After processing.
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ESTIMATING SIZE (peas)

(Top-left) Original image. 


(Top-right) Background intensity variations eliminated, by subtracting a blurred version of 
the (grey-scale) image from itself. 


(Bottom-left) Thresholding [TR] so that 50% is white. (Minor noise-removal filtering as 
also been applied.) 


(Bottom-right) Red spots indicate the centres of the blobs in [BL].
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BONES IN CHICKEN MEAT (x-ray image)

(Top-left) Original image 
Notice the low-contrast 
bone, bottom-left. [Image 
supplied by Dr. Mark 
Graves.] 


(Top-right) Contrast en-
hanced. 


(Centre-left) Binary im-
age. 


(Centre-right) Intensity 
profile along the vertical 
red line.Notice the low-
contrast bone.


(Bottom- left) “Crack de-
tector” filter applied to 
[TL]. 


(Bottom-right) Bone de-
tected successfully by 
eliminating small blobs 
from [BL]. 
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AUTOMATED HARVESTING OF MUSHROOMS

(Top) Original image.


(Bottom) Mushrooms detected. Notice the false “hit” (green cross).
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GRADING FRUIT BY SHAPE (curvature of a banana / cucumber)

Bananas are classified by quality and size so they can be traded internationally. EU Regula-
tion 2257/94 states that bananas must be "free from malformation or abnormal curvature. 
Class 1 allows"slight defects of shape”; Class 2 allows "defects of shape”. Visit 


www.europarl.europa.eu/unitedkingdom/en/media/euromyths/bendybananas.html


(Top) Casual visual examination is not an adequate basis for international trade; objective 
criteria are needed to avoid and resolve disputes. 


(Bottom-left) Eliminating the ends of a banana, using morphology, to estimate the extent of 
the edible part of the fruit. (Could this form the basis for estimating its weight?) 


(Bottom-right) Circles fitted to the “inner” and “outer”edges and the central “spine”. The 
radii of these circles effectively determine the curvature, over the edible part of the fruit. 


A slightly different method would be required for the cucumber.

http://www.europarl.europa.eu/unitedkingdom/en/media/euromyths/bendybananas.html
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GRADING FRUIT (bruising, using IR sensing)

(Top-left) Apple, viewed 
under white light.


(Top-right) Same apple 
using near IR sensing. The 
dark patch indicates bruis-
ing


(Centre-left) Intensity pro-
file along the horizontal 
red line.


(Centre-right) Intensity 
profile along the vertical 
red line.


(Bottom-left) Ispohotes in 
[TR].


(Bottom-right) Outline of 
the bruised area, obtained 
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CAKE DECORATION PATTERNS (continuous extruded strip-line products)
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FISH FILLETS (x-ray image)

Using x-rays allows the thickness and total weight to be measured, as well as allowing 
bones to be detected. The original image was kindly supplied by Dr. Mark Graves] 


 

(Top-left) Original im-
age. [


(Top-right) Calculat-
ing the weight. The 
length of line B is de-
termined by the sum 
of all the intensities in 
row A in [TL]). The 
total weight is given 
by the area of the grey 
region. 


(Centre-left) Intensity 
profile, indicates the 
thickness of the flesh. 


(Centre-right) Ima-
gine the fish being 
sliced progressively, 
like bacon. Colours 
indicate different 
levels of cut. 


(Bottom-left) Simula-
tion of robotic cutting 
with no regard for 
thickness. 


(Bottom- right) Simu-
lation of robotic cut-
ting, limited to thick 
parts of the fillet. 
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MEAT & VEGETABLE PIE (Cornish pasty)

(Top-left) Original image


(Top-right) Binary im-
age, derived from [TL].


(Centre-left) Intensity 
indicates distance from 
the centroid of [TR].


(Centre-right)  Histo-
gram of distances of 
edge pixels from the 
centroid. This is a de-
scription of the blob 
shape that is independ-
ent of orientation.


(Bottom-left) Line join-
ing the two edge pixels 
that are furthest apart. 
This can be used to 
measure orientation.


(Bottom- right) Simple 
model of the blob using 
3 largest circles drawn 
inside the blob. The red 
line can also define ori-
entation.

This sample application was inspired by a recent BBC Television programme: ”Inside the 
Factory" (Series 5, Episode 6), showing a visually guided robot packing Cornish pasties. 
No details were given about how the system works but it is possible to make some reas-
onable deductions. Clearly, a light-stripe scanner was used. This does not depend on re-
flectance changes and produces a binary image, directly, without ever generating either a 
colour or grey-scale image. For this illustration, it was necessary to begin with a colour 
image
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Section 4


X-RAY IMAGES
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X-RAYS (badly wired UK plug)

(Left) Original image.


(Right) Loose strands, detected using a “crack detector” filter (grey-scale closing).
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X-RAYS (tooth brush)

(Top-left) Original image.  The dark rectangles are metal clips retaining the bristles.


(Top-right) Intensity histogram. 


(Centre-left) Threshold between zero (black) and A, identifies the retaining clips. 


(Centre-right) Threshold between A and B, reveals the retaining clips and the bristles. 


(Bottom-left) Threshold between B and C. 


(Bottom-right) Threshold between C and 255 (white). 
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X-RAYS (micro-electronic circuit)

(Top-left) Original image. 


(Top right) Detecting lin-
ear groups of dark spots, 
aligned vertically (blue) 
and horizontally (red). 


(Centre-left) Sub-image.


(Centre-right) Large 
dark spots (pads and 
solder joints). 


(Bottom left) Another 
sub-image. 

(Bottom-right) Faint ver-
tical grey lines (printed 
conductors).
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X-RAYS (foreign bodies in a filled glass food container)

(Top-left) Original 
image [Glass jar, con-
taining tomato sauce. 
Metal contaminants 
were added deliber-
ately for demonstra-
tion purposes.]


(Top-right) Pseudo-
colouring, with some 
smoothing first.


(Centre-left) Histo-
gram equalisation on 
[TL]. 


(Centre-right) Intens-
ity profile along a ver-
tical line. Notice the 
shadow of the thick 
base of the jar.


(Bottom-left) Intens-
ity profile along a ho-
rizontal line, through 
the base of the jar 


(Bottom-right) Con-
taminants detected. 

X-ray inspection of food products is, of course, a hugely important and diverse class of 
potential applications. This simple example is included here merely to highlight the pos-
sibility of Machine Vision being applied in this area. The x-ray behaviour of the container/
wrapping, the food item and the likely contaminants all contribute to the formation of the 
image. Contrast can be very low. To improve matters, dual energy x-rays sensors are 
sometimes used to generate two images are then co-processed. Modelling the container 
and filling can, also produce a useful reference guide for interpreting the raw x-ray image.
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X-RAYS (aerosol spray nozzle)

(Top-left) Original image.


(Top-right) High-pass fil-
tering, emphasises noise.


(Centre-left) Filtering to 
reduce noise, then false 
colouing.


(Centre-right) Intensity 
profile, along the vertical 
red line.


(Bottom-left) Intensity 
profile, along the horizontal 
red line..


(Bottom-right) Median fil-
ter, reduces noise level.

X-ray inspection of manufactured items has huge potential but is often rather more 
complicated than visual examination for three reasons: (i1) Object shadows are super-
imposed; (2) X-ray sources do not offer the same flexibility of beam shape, optics, and 
spectrum; (3) X-rays are more hazardous than visible light. X-rays are emitted in a 
cone-shaped beam. As a result, they distort the geometry of objects and their appar-
ent size varies with position along along the beam axis. X-ray inspection is made easi-
er if we know exactly what to expect; modelling the image formation is very useful.
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X-RAYS (9V battery)

(Top-left) Original image.


(Top-right) Intensity profile along a horizontal line. 


(Centre-left) Intensity profile along a vertical line. 


(Centre-right) Edge detector, emphasises the strong linear features.


(Bottom-left) Horizontal and vertical linear features. 


(Bottom-right) [BL] superimposed on the original.
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X-RAYS (aircraft turbine blade)

(Top) Original image.


(Centre) Contrast en-
hanced


(Bottom-left) Expanded 
view of the stripes on the 
bottom edge (fine air 
ducts) Intensity profile.  


(Bottom-right) Expan-
ded view of the stripes 
along the body of the 
blade (air ducts) Intensity 
profile. 
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CRACK DETECTION USING X-RAYS

(Top) Original image of a 
welded joint. 


(Row 2) Intensity profile. 


(Row 3) “Crack detector” 
filter. 


(Bottom) Intensity histo-
gram of [T]. In this in-
stance, thresholding also 
identifies the crack reas-
onably well. 
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Section 5


THERMAL IMAGING
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THERMAL IMAGING (sample images and pseudo-colour mapping)

Thermal images are very often shown using a pseudo-colour mapping 
shown shown opposite. However, the grey-scale version is normally 
preferred when processing thermal images.


(Top) Electrical wiring. Hot spots are bright.


(Centre-left) Electrical power line.


(Centre-centre) Industrial pipe-work.


(Centre-right) Aero-engine.


(Bottom-left) Damp floor. The wet areas are cooler (darker) due to evaporation


(Bottom-centre) Heat loss at the corner of a room. Notice the "shadow" of the battens.


(Bottom-right) Heat loss in a building.
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THERMAL (electric fuses)

(Top-left) Thermal image of 
electrical connectors and 
fuses. (bright rectangles). 
Original image. Intensity is 
approximately proportional 
to temperature over the 
range 25-40˚C. 


(Top-right) Pseudo-colour 
rendering of [TL]. This uses 
a different mapping from 
that shown on the previous 
page.)


(Centre-left) Temperature 
profile across the cables. 
(Horizontal red line)


(Centre-right) Crosses in-
dicate points of maximum 
temperature for each fuse.


(Bottom-left & Bottom-
centre) Row & column 
temperature profiles for the 
right-most fuse. 


(Bottom-right) Isotherms 
(Isophotes) for the same 
fuse.
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HEATING BY AIR FLOW

(Top-left) Original im-
age. Domestic electric 
fan-heater blowing hot 
air onto a carpeted 
floor. 


(Top-right) Median filter 
reduces noise.


(Centre-left) Poster-
ising, 16 levels. 


(Centre-right) Edges in 
[CR]. Isophotes, equi-
valent to isotherms.


(Bottom-left) Intensity 
profile, column.


(Bottom-right) Intens-
ity profile, row.
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HOT BOTTLES (IR self-luminance)

The photograph shows red-hot bottles that are just a few seconds old. Automated in-
spection is invaluable because a person cannot work close to the hot moulding machines 
for more than a few minutes. 


The mouth and upper-neck region of the bottle is cooler (darker) than the body. The base 
of the bottle is hottest, where the glass is thickest and therefore retains heat longest.


Solid-state cameras are highly sensitive to IR. It is therefore possible to use either visible-
light, IR , or a combination of the two for inspection. Examining the thermal emission can 
yield information about body shape, estimate the body-wall thickness and detect the 
presence of certain defects. An MV inspection system can monitor changes in the IR-
emission profile and provide an early alert of malfunctioning of the manufacturing system.
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THERMAL IMAGING (U-bend water trap)

(Top-left) Original image 
Notice that it contains hot 
water 


(Top-right) Tops of the 
water columns. 


(Centre-left) Maximum in-
tensity points (hot spots)  


(Centre-right) Intensity 
contours/isotherms.  


(Bottom-left) Intensity 
profile, row. 


(Bottom-right) Intensity 
profile, column. 
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ENERGY MONITORING (electrical power strip)

(Top) Original image, 
visible-light (VIS)  
camera


(Top-right) Power 
strip end limits, cal-
culated from [TL]. 


(Centre-left) IR im-
age. (FLIR One 
camera


(Centre-right) End-
edges superim-
posed on [CL]. 


(Bottom-left) [CL] in 
pseudo-colour.


(Bottom-right) Edge 
contour, calculated 
from [TL], superim-
posed on the IR im-
age. Cross indicates 
the brightest point 
(hottest). 


This application shows visible and IR images being combined.
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THERMAL IMAGING, RAYNAUD'S SYNDROME

(Top-left) Original image. 


(Top-right) Median filter & blur-
ring filter. 


(Centre-left) Intensity profile, 
row. 


(Centre-right) Intensity profile, 
column. 


(Bottom-left) Intensity contours/
isotherms. 


(Bottom-right) Posterising & 
pseudo colour applied to [TR]. 


Raynaud’s Syndrome is characterised by cold hands, feet, ears, nose, lips or nipples. It is 
therefore ideally suited to examination by thermal imaging. The image shown here was 
generated by a low-cost thermal imager (FLIR One. Cost about £200). The hand used in 
this study is my own as are the ideas for processing the camera image.
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THERMAL IMAGING (footprints) 

(Top) Original im-
age. [Heat “shad-
ow” left on a car-
peted floor after 
standing barefoot 
for a few seconds] 


(Top-right) Medi-
an & smoothing fil-
ters. 


(Centre-left) In-
tensity profile, 
column. 


(Centre-tight) In-
tensity profile, 
column. 


(Bottom-left) Iso-
photes/isotherms. 


(Bottom-right) 
Pseudo-colour 
rendering of [TR]. 


Visualising the pressure areas on the soles of feet when standing was suggested to me as 
a potential application of image processing around 1978. Deformities can be observed by 
looking at the contact areas when standing bare-foot on a sheet of glass. Thermal ima-
ging provides an alternative method of sensing. (Camera: FLIR One)
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Section 6


MANUFACTURING INDUSTRY
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CATALYTIC CONVERTER SUBSTRATE

Ceramic substrate for an automobile catalytic converter. 


(Left) Original image. This poor image was obtained using a standard macro lens and 
front lighting. The camera's angle of view varies across the image. In the dark area, 
near the top, the camera is able to see deep into individual exhaust-gas channels. 
Elsewhere, the angle of view is slightly oblique, so the brighter top parts of the side 
walls are evident. 


(Right) There are 3449 black spots; one channel was missed. (Near the edge, 11 
o’clock position.)
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PRINTED CIRCUIT BOARD (locating component lead holes)

(Top-left) Original image.


(Top-right) R-image. (Red channel)

(Bottom-left) [TR] after thresholding and noise reduction. 


(Bottom-right) Centroids of white areas in [BL]..
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SCRATCHES (internal surface of an hydraulics cylinder)

(Top) Photograph. The bore (about 100 mm long) to be inspected is facing the 
camera and has a smooth surface with a near mirror-quality finish.


(Bottom-left) Image captured from a laser flying-spot scanner. 


(Bottom-right) Scratches, detected using grey-scale morphology.
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SAFETY CRITICAL INSPECTION (piston for car brake hydraulics system)

(Top) The assembly consists of four parts, including two plastic washers.


(Bottom) Enlarged views of the washers. The washer on the left has a straight profile, 
while the one on the right has a “kink” (arrowed). The correctness of assembly can be 
checked with simple linear scans along four lines (A - D).
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LIGHT BULB (loose wires`)

Occasionally, the internal wires to the "eyelet" surface contacts are not cropped properly, 
making the light-bulb potentially dangerous.


(Left) Original image. 


(Right) The loose wire has been detected using grey-scale morphology
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ASSISTING AUTOMATED PARTS -HANDLING ( electric motor brushes)

(Top-left) Original im-
age.The brushes have 
been oriented roughly by 
guide rails above a con-
veyor belt.


(Top-right) Contours 
around each brush separ-
ately. To detect interlock-
ing, measure the area with-
in the red contour.


(Centre-left) The carbon 
blocks have bee isolated 
and the centroid of each 
one has been calculated.


(Centre-right) The springs 
have been isolated and 
points near the centre of 
each one has been calcu-
lated.


(Bottom-left) Merging [CL] 
and [CR] for ease of com-
parison.


(Bottom-right) Row-integ-
ration profiles.

Components, such as these carbon brushes can often be orientated roughly, using 
guide rails, placed just above a conveyor belt. However, to assemble them into a motor 
we must be sure that they are travelling “heads first”.


that they are not interlocked.  Check that the area within the red contour is within the 
expected limits.
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COMPLEX OBJECT, MULTI-FEATURE INSPECTION (car brake assembly)

(Top-left) Original image.


(Centre) The area within the outer edge and its centroid. 


(Bottom-left) A sub-image, centred on the cross in [TR], defines the first region-of-in-
terest. (Call this ROI-start.)


(Bottom-right) Centroids of the holes in ROI-start. These allow us to calculate the posi-
tion more precisely and determine the orientation..


The next page continues the story.
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COMPLEX OBJECT, MULTI-FEATURE INSPECTION (continued)

Four additional regions of interest (red, ROI 1 - ROI 4) have been identified following the 
initial placement of ROI-start.(yelllow) Each ROI is small and can be processed quickly. 
The processing within each ROI is usually very simple,  because we know what to ex-
pect. We can reasonably assume that the assembly is held in place during inspection.


ROI 1 Spring. Each coil has been identified (vertical white stripes at the bottom of the 
lower image)


ROI 2 Rivets. Both have been checked and their positions calculated.


ROI 3 Cap of a spring (not visible). Checked and its position calculated.


ROI 4 A complex collection of levers and springs. These are checked by looking for their 
edges. Such a simple test is sufficient because we know what to expect.



GUIDING A ROBOT (31/2 degrees of freedom)

 (Top-left) Original im-
age (binary). 


(Top-right) Centroid 
and principal axis. 


(Centre-left) Normal-
ising position so that 
the centroid is at the 
middle of the image.


(Centre-right) Orienta-
tion and position have 
both been normalised. 
Blue disc shows the 
position of a magnetic/
suction gripper. (If the 
gripper is larger than 
this, lifting is not safe.)


(Bottom-left) Placing a 
robot gripper with two 
fingers (yellow discs). 
Line B is at 90˚ to the 
principal axis (A) and 
passes through the 
centroid.


(Bottom-right) Alternat-
ive way to define orient-
ation. Centroid of the 
largest lake and the 
centre of the inscribed 
circle at the “little end”

A SCARA robot (or a pick-and-place robot positioned over an (X,Y,θ )-table) could be 
used to pick up the con-rod. Three measurements ([X,Y]-position and orientation) are suf-
ficient for this task. Two different gripper types are simulated: surface-grasp (i.e suction or 
magnetic, [CR]), or 2-finger edge-grasp. [BL] 
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GUIDING A ROBOT (alternative ways of measuring position & orientation)

(Top-left) 4 flat objects


.(Top-right) Centroids of 
finger holes define both 
position & orientation


(Centre-left) Stamping 
for an electric motor. Po-
sition & orientation 
defined by centroids of 2 
holes, selected by size. 


(Centre-right) Ferrite 
core for electronic circuit.  
Centroids of bays define 
position & orientation.


(Bottom-left) Alloy cast-
ing for a clutch. Orienta-
tion is defined by the 
notch-shaped bay.


(Bottom-right) Gear. 
Any bay will suffice to 
define orientation.

The centroid of a U-shaped object lies outside its boundary. For object 3 in [TL], the 
centroid lies close to its edge. Object 1 does not have a unique principal axis. The prin-
cipal axis for object 3 is ill-defined; its behaviour is erratic, due to quantisation and cam-
era noise. In these situations, other ways to measure position and orientation are needed.
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FINDING ORIENTATION OF CIRCULAR OBJECT

(Top-left) Alloy casting, 
tractor clutch compon-
ent


.(Top-right) Transform-
ation to polar coordin-
ates. 


(Centre-left) Orienta-
tion defined by 
centroid and dark sur-
face feature.


(Centre-right) Alloy 
cam.


(Bottom-left) Lakes 
derived from binary 
version of [CR]..


(Bottom-right) 
Centroids of the lakes. 
The largest lake can be 
identified easily, to ob-
tain a unique measure 
of orientation.
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ROBOT HANDLING COIL WITH LOOSE WIRES

One plan-view and four side-cameras are are required. Their relative positions must be 
known exactly. A robot with a 2-finger gripper is used. 

(Top-left) Original image. Plan view of the coil.


(Top-right) Ends of the wires have been located. (A and B) Another point (C), near to A 
and lying along the wire, has also been found. The line AC defines both position and ori-
entation of the end of the wire. The finger-tips of a robot, as it is about to grasp the other 
wire (near B), are indicated by mauve bars. 


(Bottom-left) Every side-view camera has blind-spots, where the wire ends are either 
hidden or obscured. A camera looking along line P can see A but B is hidden /obscured.  


(Bottom-right) Four side-view cameras are needed to locate wire ends, wherever they 
are. Their blind regions are indicated by the colour stripes. Deciding which side-view 
camera provides the best view(s) requires the plan-view image.
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ROBOT HANDLING (reconciling views from different cameras)

(Top) Layout, view, as seen 
from the (unseen) plan cam-
era. The coil is viewed 
against a back-lighting unit 
(grey box). 


(Centre-left) Gripper orienta-
tion (D) in the horizontal 
plane is calculated from the 
positions of A (end of lead) 
and B (another point near A 
and also lying along the 
wire).


(Bottom-left) The best side-
view camera has been selec-
ted by analysing the plan 
view. The gripper orientation 
(H) in the vertical plane is 
calculated from positions of 
E (end of lead) and F (anoth-
er point on the wire near E) 


(Bottom-right) Aligning indi-
vidual wire ends visible in the 
plan and side views.
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HIGH-VOLUME, LOW-VALUE PARTS (battery-top plastic mouldings) 

This and the three following inspection applications demand simple, high-speed, low-cost 
processing. Although they are simple components, they may be are critical within a larger, 
more complex and valuable assembly. Inspecting battery tops requires only simple meas-
urements, such as area, and Euler number. (This is a fast calculation and counts the num-
ber of blobs minus the number of lakes.) 

(Top) Battery tops with 
short-feed moulding 
faults. 


(Bottom-left) Circle fit-
ted to the outer edge. 
Differences between the 
silhouette and the fitted 
circle are shown in 
white. 


(Bottom-right) Determ-
ining the distribution of 
radial distances from 
the centroid. For clarity 
of illustration, the in-
tensity is shown as 
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HIGH-VOLUME, LOW-VALUE PARTS (switch plastic mouldings) 

Plastic mouldings for a small electrical switch. Three have moulding faults due to the 
presence of “flash”. (Molten plastic has flowed between the two halves of the die during 
the moulding process, leaving a thin “leaf” of unwanted material.) The flash is fragile and 
will readily break off, ;possibly jamming the switch or the swich assembly machine.
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HIGH-VOLUME, LOW-VALUE PARTS ("nail", part of a pop rivet)

A pop rivet (also called a blind rivet) has two components: the "nail" and sleeve. If the 
nail has not been made properly it may have a blunt or fan-tail end. This may jam the 
assembly machine, causing a severe loss of production. 


When I studied this application 1980, the factory made 23,000,000 nails per week. The 
company staff knew that they were unavoidably discarding £700 worth (equivalent to 
£1980 in 2018) of "good" nails each week because it was not possible to detect a tiny 
proportion of faulty products within a large batch. Loss of production and clearing ma-
chine jams were additional costs, not included in this figure.


Inspection requires that the nails be presented in the same orientation each time. Simply 
measuring the chord-length across the nail close to its end is sufficient to determine 
when the nail is defective.


Notice that the parts-handling mechanism of the inspection system must be able to ac-
cept defective nails without jamming
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EXTERNAL SCREW THREAD

(Row 1) Edge of the 
thread.


(Row 2) Flank (/). De-
tected using binary 
morphology.


(Row 3) Flank (\). 
Again, detected using 
binary morphology.


(Row 4) Troughs, found 
using binary morpho-
logy. Structuring ele-
ment (SE) is defined by 
that part of the edge 
inside the yellow box. 


(Row 5) Peaks, found 
in a similar way.

This is an exercise in computational geometry. Measurements required:


1. Flank angle. 


2. Radius of curvature of the peak & trough of each thread.


3. Depth of thread.
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INTERNAL SCREW THREAD (viewed obliquely from outside)

(Top-left) Original image. 


(Top-right) Grey-scale dilation, followed by erosion. 


(Centre-left) [TL] subtracted from [TR]. 


(Centre-right) [CL] after contrast enhancement. 


(Bottom-left) [CR] after thresholding. 


(Bottom-right) Small blobs in [BL] were removed and some noise reduction applied. 
The resulting contours have been superimposed on the original. Inspection requires that 
these contours are all present, intact and have the correct radius of curvature.



HARDNESS TESTING
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To measure the hardness of a surface, we first form a tiny indentatio, by pressing a 
pointed tool into the surface, with a standard force. The size of the Indentation meas-
ures the hardness. An automated hardness testing procedure must tolerate some sur-
face texture.


Vickers: Tool, diamond; URL: https://en.wikipedia.org/wiki/Vickers_hardness_test 

Brinell:  Tool, spherical   URL: https://en.wikipedia.org/wiki/Brinell_scal 

(Top-left) Vickers 
hardness test, Dia-
mond indenter.


(Top-right) Brinell 
hardness test. Spher-
ical indenter. 


(Bottom-left) Contour 
around the edge of the 
Vickers indentation. 

(Bottom-right) Con-
tour around the edge 
of the Brinell indenta-
tion.

https://en.wikipedia.org/wiki/Vickers_hardness_test
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AEROSOL SPRAY CONE

Typical spray-cone measurements: angle; symmetry, density profiles. Inspection tasks, 
detect: jets, voids, large drops and pulses of spray material.

(Top-left) Two origin-
al images. 


(Top-right) Row in-
tensity profiles. 


Centre-left) Column, 
intensity profiles. 


(Centre-right) In-
tensity contours. 


(Bottom-left) 
Pseudo-colour rep-
resentation of the in-
tensity


(Bottom-right) Col-
ours indicate wheth-
er the intensity is in-
creasing, or decreas-
ing, as we travel from 
left to right.
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CRACKS IN METAL (magnetic-particle visualisation)

There are several ways to enhance the visibility of cracks. See for example: 


Magnetic Particle: URL https://en.wikipedia.org/wiki/Magnetic_particle_inspection 

Dye Penetrant:	 URL https://en.wikipedia.org/wiki/Dye_penetrant_inspection

(Top-left) Original im-
age. (No processing was 
used.


(Top-right) Crack detec-
ted by grey-scale mor-
phology, plus noise re-
moval.


(Centre-left) Original 
image. (Magnetic-
particle indicator)


(Centre-right) Crack 
detected by grey-scale 
morphology, plus noise 
removal. 


(Bottom-left) Original 
image. [Dye-penetrant  
indicator] 


(Bottom-right) Crack 
detected by grey-scale 
morphology, plus noise 
removal.
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ELECTRONICS (pattern location and inspection)

(Top-left) Original image,high-
precision printing on a  ceramic 
wafer. The sub-array within the 
red rectangle defines the correla-
tion template for [TR].


(Top-right) Cross-correlation 
map between the template and 
the rest of the image in [TL].


(Centre-left) Intensity profile 
through one row of brights spots 
in [TR]. The sharp, well-defined 
peaks show that the template fits 
similar patterns very precisely. 


(Centre-right) Another original 
image, the component side of the 
same wafer as in [TL].


(Bottom-left)  Cross-correlation 
map between the template and 
the rest of the image in [CR].


(Bottom-right) Intensity profile 
through the two brights spots in 
[BL]. Again, the sharp, well-
defined peaks show that the 
template fits the similar pattern 
very precisely.


New-comers to Machine Vision envisage, expect direct image comparison (grey-scale 
template-matching) to be useful as a means of pattern matching. In practice, it is not 
used often because it is very susceptible to quantisation noise, camera noise and minor 
deviations compared to the reference pattern. In the application, shown here high-preci-
sion printing on a very stable substrate allows it to be used successfully. First, it is neces-
sary to put the template in place. The two examples shown here use correlation to 
achieve an optimal fit.
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LEATHER

(Top) Animal hide. The quality and thickness of the leather varies across the hide: 


	 •Belly, thin, soft pliable leather, suitable for gloves; shoe uppers, leather clothing. 


	 •Back, thick tough leather, suitable for soles of shoes and boots, protective ware.


There is are several potential applications for a vision system


• Inspecting the hide for cuts, tears, thin spots, etc.


• Deciding where to place a "pastry cutter on the hide to produce componentS for 
gloves, shoes, etc 


• To sort /check loose shoe components


(Others) Leather shapes for shoe components. At any given moment, components for 
several different styles and size of shoes will be present in the factory production area. 
For most shapes its the mirror image is also present




93

POPULATED PCB

Model-based inspection of a complex scene. While a printed circuit board presents a 
complex image, only a few small areas are likely to be of significant interest. Vertical lines 
(A and B) and horizontal lines (C and D) are identified first. These provide “anchors” that 
enable the inspection program to define specific regions of interest (ROIs) and then apply 
the appropriate image processing function to each one. The distance AB determines the 
horizontal scale. Lines A and B also allow us to fix the horizontal position. Similarly, lines 
C and D determine the vertical position and scale. These “anchors” allow the program to 
place the ROIs (four red rectangles.) Since each ROI covers only a small part of the 
board, very simple inspection checks might suffice, e.g. number of blobs of known col-
ours (resistor colour codes), or checking that there is a large black object with three 
bright spots (left-most ROI, potentiometer)
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VIDEO MONITORING OF A CYCLIC MANUFACTURING PROCESS

(Top) Two frames from a video  (Appendix: Movie ???)


(Centre-left) Histogram of the difference of Intensities of two frames, at the same phase 
in different cycles.


(Centre-right) As in [CL] but for different phases. (i.e. Histogram of difference of intensit-
ies in [TL] and [TR].)


(Bottom) Multi-image histogram. The intensity histogram of each frame in the video is 
represented by the intensities along one row in this image. It is easy to detect and ana-
lyse the the cyclic pattern, so that same-phase frames can be directly compared. Notice 
that the video is played twice.
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Section 7


SPORT & LEISURE
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SAILING (monitoring sail trim on a racing yacht)

SailSpy is a real-time vision sys-
tem, developed for automatically 
measuring sail shapes and 
masthead rotation on ocean-go-
ing racing yachts. It was used by 
the New Zealand team in two 
America's Cup challenges in 
1988 and 1992. SailSpy uses 
four video cameras mounted at 
the top of the mast to provide 
views of the headsail and main-
sail on either tack. The cameras 
are connected to a computer be-
low deck using lightweight cables 
mounted inside the mast. Images 
received from the cameras are 
automatically analysed by com-
puter which calculates sail-shape 
and mast-rotation parameters. 
The sail-shape parameters are calculated by recognising sail markers (dark el-
lipses) on the sails, and the mast-rotation parameters by recognising markers 
painted on the deck. Uncontrolled twisting of the mast can lead to sudden, 
catastrophic breaking


Using a vision system to analyse sail shape on high-performance racing yachts 
is common practice now.
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SPORT (Soccer, Cricket, Tennis)

(Top-left) Cricket-ball traject-
ory analysis and flight predic-
tion. This is important for 
judging  leg-before-wicket 
appeals, which hinge on very 
narrow margins.


(Top-right) Tennis-ball 
bounce analysis. The out-
come of a match may depend 
on whether the ball bounces 
in/out of court.


(Bottom) Player-position 
monitoring during a soccer 
game. The simulated plan 
view of the pitch indicates 
player positions and is calcu-
lated by a pitch-side vision 
system

Many sports require action replay but this does not necessarily require a vis-
ion system to measure or interpret images. However, vision systems are 
employed for a wide range of sports, including cricket, tennis, Gaelic foot-
ball, badminton, hurling, rugby union association football (soccer), volleyball, 
etc. Hawk-Eye is one such system. It is able to track the flight of a cricket 
ball and is even able to predict its future trajectory (after bouncing), to make 
critical decisions about leg-before-wicket appeals. (Predicting the bounce of 
a spinning cricket ball is beyond its capability - and many batsmen!) In ten-
nis, the system is used to locate the exact point of bounce and thereby make 
critical decision about who wins a rally. 


Monitoring and tracking the movements of players on a football field is useful 
for after-the-event analysis and can assist coaches and television comment-
ators  


https://en.wikipedia.org/wiki/Hawk-Eye
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SWIMMING POOL (detecting potential danger of drowning)

Multi-camera vision systems have been devised to detect possible dangerous (drowning) 
situations in swimming pools. [ URL http://www.poseidon-tech.com/us/system.html] 


A Poisedon system, installed at a pool in Bangor, Wales, UK saved the life of a 13-year 
old girl. [URL http://www.youtube.com/watch?v=qfKEBfPobmE] 


(Top-left) Still from a video of a swimmer, taken using an underwater camera.


(Top-right) Two frames from this video sequence have been subtracted.


(Bottom-left) Binary image extracted from [TR].


(Bottom-right) Outline of the swimmer's body was extracted fro (BL] and superimposed 

http://www.youtube.com/watch?v=qfKEBfPobmE
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Section 8


PRIVACY & SECURITY
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FINGERPRINTS 

(Top-left) Binary fingerprint, obtained by filtering, thresholding and reducing noise the original 
grey-scale image. This is a good-quality reference print. A scene-of-crime finger print will often 
be from a smaller part of the finger-tip and of inferior quality


(Top-right) "Focus" of the ridge-swirl pattern, identified by combining multiple binary morpho-
logy. The angled red line shows an estimate of the most prominent ridge direction and 
provides a crude estimate of the "orientation" of the fingerprint pattern (not the finger).  

(Bottom-left) Features of interest, obtained by applying the skeleton operator to [TL]:  The 
skeleton limb ends (ends of ridge arcs) are marked with red spots) . The skeleton joints (ridge 
bifurcations) are indicated by blue spots blue.


(Bottom-right) Two fingerprints can be matched by comparing their corresponding "star 
maps” like this. Inter-star distances are nearly constant, so there is no need to adjust the size 
of the prints during the matching process. The scene-of-crime star-map is rotated progress-
ively (around the red cross, focus) to find the best fit to that derived from the reference print. 
The angled red line in [TR] suggests a good starting point for this search.
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IRIS RECOGNITION

(Top-left) Original image. 


(Top-right) Iris and pupil isolated. 


(Bottom-left) Circles fitted to the edges of the pupil and iris. 


(Bottom-right) After filtering and thresholding the grey-scale. The filtering relied on sub-
tracting a blurred image from a very blurred image. Matching this pattern to a set of 
stored reference patterns, requires additional computation, akin to reading a (circular) bar 
code.
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BANK NOTE  (security detail on old-issue UK £5 note)

(Top-left) Fluorescent ink is 
made visible using ultraviolet 
light. This image was captured 
viewing light within the visible 
waveband.


(Top-right) Image segmented 
by intensity thresholding. 


(Centre-left) Image segmen-
ted using colour separation. 


(Centre-right) Visual image in 
white light. 


(Bottom-left) The meandering 
curve was obtained by pro-
cessing [CR]. 


(Bottom-right) Relating the 
UV and visible images by 
ANDing the meandering curve 
in [BL] with the blobs derived 
from the UV image [TR].
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HOLOGRAM (and other surfaces producing diffraction patterns)

(Left) Original images. White light was projected onto the same credit-card hologram, 
from six different directions. Only the angle of illumination was varied.


(Right) Colour features derived from [L].
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SECURE CODING OF A BINARY IMAGE (1-TIME PAD)

(Top) Pseudo-random binary image, generated in 
MatLab using the Mersenne Twister algorithm. 
Important points to ensure high security:


1. 50% of the pixels in this image must be white.


2. The random image must be used only once. 
(This is a “1-time pad” coding method.)


3. In a real security application this image would 
be held by both sender and receiver of the 
coded message.


(Centre) Message after coding. This was gener-
ated by combining [T]  with the binary image to be 
hidden (QR code) using exclusive OR].


Y 

(Bottom) Result of combining [T] and [C] using 
exclusive OR. This is identical to the original QR 
code
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WATERMARKING (EMBEDDING A BINARY IMAGE)

(Top-left) Original grey-scale image. This 
will be used as decoy, to obscure the  
presence of the message in [C].


(Centre) A binary image, representing a 
"secret message".


(Bottom) [C] embedded in [T] by inverting 
the least-significant bit at each location 
corresponding to a white pixel in [C]. Al-
though this and [T] are visually indistin-
guishable), [C] can be reconstructed ex-
actly, by simple image subtraction.
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WATERMARKING A COLOUR IMAGE / HIDING 3 QR CODES 

(Top-left) Original colour im-
age. 


(Top-right) Watermarks ad-
ded. Notice that this and [TL] 
are visually indistinguishable


(Centre-left, Centre-right, 
Bottom-left) QR-codes rep-
resenting the six verses of the 
hymn “Amazing Grace” by 
John Newton. These were su-
perimposed on the R, G and B 
channels of [TL] respectively. 


(Bottom-right) Bit reversal of 
[TR]. The three QR-codes can 
be extracted from this image 
by selecting the least-signific-
ant bit in each of the RGB 
channels in turn and then 
thresholding.
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SENSING THE COLOUR STATE OF PHOTOCHROMIC INK (explanation)

(Top) The shape of the 
PCM molecule can be 
switched to the "col-
our" state by illuminat-
ing it with UV. This can 
be reversed, using vis-
ible light.


(Centre) Reflectance 
spectra of PCM. Ob-
serving the energy 
within a narrow spec-
tral band (mauve) al-
lows the colour switch 
to be detected reliably.


(Bottom) Colours of 
four types of diary-
lethene ink. 


[Source: Proc Jpn 
Acad Ser B Phys Biol 
Sci. 2010 May 11; 
86(5): 472–483.]

The photochromic material (PCM) used in this application undergoes a reversible change 
of colour (clear to pink to clear) in response to electromagnetic radiation (UV and visible 
light). Both colour states are stable and the switching is fast. This PC differs from that 
used in photochromic spectacle lenses, which has one stable and one quasi-stable state


PCs have considerable potential for adding extra security features to bank notes, credit 
cards, identity cards, etc. Combined with Machine Vision and the coding methods out-
lined later,
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SENSING THE COLOUR STATE OF PHOTOCHROMIC INK (results)

(Top-left) Photo-
chromic ink in its col-
ourless state. The PC 
and black inks are de-
liberately superim-
posed.


(Top-right) Photo-
chromic ink in its col-
oured state. 


(Centre-left) Intensity 
histogram of [TL].  


(Centre-right) Intens-
ity histogram of [TR]. 


(Bottom-left) Histo-
gram of the difference 
in the intensities of [TL] 
and [TR]. Notice that 
there is a well defined 
valley, providing a 
clear guide for 
thresholding. 


(Bottom-right) 
Threshold of the differ-
ence image (i.e.sub-
tracting the intensities 
of [TL] and [TR]). 
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Section 9


RECOGNISING  
PRINTED CHARACTERS,  

LOGOS & MOTIF PATTERNS 
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OPTICAL CHARACTER RECOGNITION (OCR)

Illustrating basic principles of character recognition on well-formed printed alpha-numeric 
characters, the value symbols of playing cards: 2,3, ....,10, J, Q, K, A The processing was 
designed to ignore serifs, since they are very small and may produce erratic results 


(1) Original grey-scale images. 


(2) Binary images, derived from column 1.. 


(3) Graphs showing numbers of white pixels along each row in column 2.


(4) Graphs showing numbers of horizontal black-white transitions along each row 


(5) Spots indicate the skeleton limb ends. 


(6) Spots indicate the skeleton joints. 


(7) Major bays. 


(8) Lakes (Euler number is faster)
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OPTICAL PATTERN RECOGNITION (playing cards)

A commercial system has been developed for checking the integrity of new packs of 
playing cards. This application does not represent a large area of application for Ma-
chine Vision. However, playing cards do possess many features in common with printed 
cartons. As a result, they provide a useful model for demonstrating how Machine Vision 
can contribute in this very much larger market. 


In this illustration, morphology is used to recognise Q and small-♥ and the same pat-

terns inverted. 

(Top-left) Original image: col-
lage of four cards.


(Top-right) B-image. This 
gives the greatest contrast 
(out of RGB) for the red fea-
tures in [TL]. The red Q here 
was used to define the struc-
turing element for morpho-
logy.


(Bottom-left) Qs detected 


(Bottom-right) All Qs and 
small ♥s detected. This is a 

composite of four different 
morphology operations, de-
tecting Q, ♥ and these pat-

terns inverted.
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OPTICAL CHARACTER RECOGNITION (OCR)

(Top-left) Original image.

(Top-right) Create a 
Structuring Element (SE) 
by thinning a sample of 
lower-case "s".


(Centre-left) Red 
crosses indicate where 
the SE fits the text.

(Centre-right) Letter "e" 
detected. SE designed 
for that purpose.


(Bottom-left) Letter "a" 
detected. SE designed 
for that purpose.

(Bottom-right) Parts of 
letters detected by 
erosion with vertical bars 
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COMPLEX REPEATING PATTERNS (woven silk neck-tie)  

(Top-left) Original 
image.


(Top-right) Tem-
plate enlarged.


(Centre-left) Cross-
correlation map.


(Centre-right) In-
tensity profile 
through the spot in 
the blue rectangle in 
[CL].


(Bottom-left) 
Centres of the spots 
in [CL]. Each cross 
indicates where the 
template matches 
an elephant.


(Bottom-right) 
Template compared 
to each best-fit 
sub-image. For a 
perfect match, the 
corresponding rect-
angle is uniformly 
grey.

New-comers to Machine Vision almost invariably expect more of template-match-
ing than is achieved in practice. Slight variations in the product, that are barely 
discernible by eye, often lead to a poor match between the repeating pattern and 
template. For this illustration, a template was derived from one of the repeated 
patterns (elephant in the red rectangle). Cross-correlation (a grey-scale function) 
finds a good match between the template and each of the other elephants. Once 
the (local) best-fit positions have been found, it is a trivial matter to complete the  
inspection process, using simple image subtraction.
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QR CODE (locating “anchor” points, prior to reading)

(Top-left) Original 
image  


(Top-right) “Anchor" 
points, identified as 
large (black) islands 
in islands. 


 


(Centre-left) Lines 
joining the anchor 
points provide refer-
ence axes for normal-
ising orientation 


(Centre-right) Norm-
alising orientation (ro-
tating [TL] so that the 
upper red line in [CL] 
is horizontal.


(Bottom-left) intens-
ity profile along the 
horizontal line is like a 
bar-code, represent-
ing a series of 0s and 
1s.


(Bottom-right) in-
tensity profile along 
the vertical line also 
produces a "bar-
code" of 0s and 1s..
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Section 10


ALLSORTS
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ASBESTOS FIBRES

(Top-left) Original image.


(Top-right) Binary image.


(Bottom-left) Hough Transform of [TL]. 


(Bottom-right) Straight lines detected in [TR] by finding the intensity peaks in [BL].
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DUST (compact particles)

(Top-left) Original (binary) image. 


(Top-right) Colour coding blob area. Big blobs (dust particles)  are red; mid-size, orange 
and green and small ones blur.


(Bottom-left) Showing the number of blobs in the indicated size ranges.


(Bottom-right) Blobs were removed progressively, by erosion, using a 3x3-pixel square 
structuring element. The right-most column indicates how many blobs remain after each 
stage. E.g. 64 blobs “survived” repeating erosion 6 times. 
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DUST (short, usually isolated fibres)

(Left) Original image. 


(Right) Ends of the fibres, detected by finding the limb-ends of the skeleton.



119

COUNTING BACTERIA ON A CULTURE PLATE (low density culture)

(Top-left) Original im-
age. 


(Top-right) R-image.


(Centre-left) G-image. 


(Centre-right) B-image.


(Bottom-left) A colour 
image was reconstituted 
after each of the RGB 
channels was enhanced 
separately.


(Bottom-right) Crosses 
mark the centroids of 
the red spots found by a 
colour-recognition filter 
designed to detect "red" 
while ignoring "yellow".


In this application, separating the RGB colour components is particularly useful. The yellow 
grid is superimposed on the culture-growth material (impregnated paper sheeting) and 
provides an aid for human visual analysis. A pre-calibrated machine vision system does 
not need the grid: the G-image simply ignores it, while its contrast is greatly enhanced in 
the B-image.
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COUNTING BACTERIA ON A CULTURE PLATE (high density culture)

(Top-left) Original im-
age. 


(Top-right) Intensity 
component of [TL]. (I-
Image). 


(Centre-left) Placing a 
cross on every dark 
spot.


(Centre-right) Magni-
fied view of region A in 
[CL].


(Bottom-left) Magni-
fied view of region B in 
[CL].


(Bottom-right) Green: 
Three or more merged 
spots; Red: Two 
merged spots; Blue: 
Isolated spots. Blob-
size is used as the cri-
terion for deciding 
whether merging has 
occurred.
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CREASED FABRIC

(Top-left) Original 
image. Low-angle il-
lumination. No at-
tempt was made to 
crease the fabric in a 
controlled manner..


(Top-right) Pseudo-
colour.


(Centre-left) Binary 
image, after filtering 
and thresholding. 


(Centre-right) 
Strong vertical fea-
tures detected by 
binary morphology.


(Bottom-left) Strong 
horizontal features-
detected. 


(Bottom-right) 
Strong diagonal (/) 

A large high-street clothing retailer was interested in quantifying the creasing properties 
of fabrics, such as those used in shirts, blouses and dresses. 
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KNITTED FABRIC

(Top-left) Original 
image. 


(Top-right) Low-pass 
(blurring) filter. 


(Centre-left) Direc-
tional low-pass filter-
ing, followed by 
thresholding. 


(Centre-right) Ver-
tical strands were de-
tected by processing 
with morphology op-
erators [CL]. Hori-
zontal strands were 
similarly identified. 


(Bottom-left) Direc-
tion of intensity 
gradient in [TR], col-
our coded. 


(Bottom-right) Pro-
file of the column-av-
erage intensity.
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TEXTURE  (travertine floor  tiles)

Texture inspection is needed in the food industry (e.g. baked goods), leather working, car 
body paintwork, wood-working, decorative crafts It is a complex process combining ele-
ments of Machine Vision and Machine Learning; a full explanation is far beyond beyond 
the scope of this short chapter. Let it suffice to say that each texture sample is processed 
in order to generate a set (strictly, a vector) of numerical measurements. A texture sample 
is then classified by comparing its corresponding measurement vector to the vectors de-
rived from known "good" textures.  There is no difficulty in generating a multitude of 
measurements from a texture image. Machine learning is needed to decide which meas-
urements are most effective and how they should be combined. It is usually impossible to 
write a formula for recognising "good" texture, in which case, teaching by showing is 
needed.

(Top-left) Four samples of 
travertine bathroom tiles.


(Top-right) Intensity. (I-image)


(Centre-left) Saturation gives 
good contrast. (S-image)


(Centre-right) Histogram 
equalisation of [TR], applied to 
each quadrant separately.


(Bottom-left) [CR] thresholded 
at mid-grey. Exactly 50% of 
each image is white


(Bottom-right) Row-
integration of [BL] showing 
number of white pixels in each 
row
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TEXTURE  (wood floor tiles)

Texture analysis is a complex process combining elements of Machine Vision and Machine 
Learning; a full explanation is far beyond beyond the scope of this short chapter. Let it suf-
fice to say that each texture sample is processed in order to generate a set (strictly, a vector) 
of numerical measurements. A texture sample is then classified by comparing its corres-
ponding measurement vector to the vectors derived from known "good" textures.  There is 
no difficulty in generating a multitude of measurements from a texture image. Machine 
learning is needed to decide which measurements are most effective and how they should 
be combined. It is usually impossible to write a formula for recognising "good" texture, in 
which case, teaching by showing is needed.


(Top-left) Four samples 
of wood floor tiles.


(Top-right) Intensity. (I-
image)


(Others) Saturation gives 
good contrast.  Various 
type of filter. Notice how 
well the filter distin-
guishes different tex-
tures.
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WATER DROPS ON GLASS  (size analysis)

(Top-right) Original image. Back lighting


(Top-right) Binary image derive from[TL].


(Bottom-left) Blobs shaded in [TR] according to their areas: biggest blobs are brightest.


(Bottom-right) Pseudo colouring of [BL].
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SKIN - MOLES

(Top-left) Original 
image. 


(Top-right) Pseudo-
colour. 


(Centre-left) Intens-
ity profile. 


(Centre-right) In-
tensity contours.


(Bottom-left) Binary 
image, Inset, show-
ing the “ragged” 
edge.


(Bottom-right) Edge 
contour.


	GLASS & CLEAR PLASTIC
	NATURAL PRODUCTS
	FOOD &
	FOOD PRODUCTS
	X-RAY IMAGES
	MANUFACTURING INDUSTRY
	SPORT & LEISURE
	PRIVACY & SECURITY
	ALLSORTS



